
Administering Evergreen
through the Command Line

Documentation Interest Group

Administering Evergreen through the Command Line
Documentation Interest Group

Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

Table of Contents
I. Introduction ... 7

1. About This Documentation ... 9
2. About Evergreen .. 10

II. Installing Evergreen ... 11
3. System Requirements ... 14

Server Minimum Requirements .. 14
Web Client Requirements ... 14
Staff Client Requirements ... 14

4. Installing the Evergreen server ... 15
Preamble: referenced user accounts .. 15
Preamble: developer instructions .. 15
Installing prerequisites .. 16
Extra steps for web staff client .. 17
Configuration and compilation instructions .. 17
Installation instructions ... 18
Change ownership of the Evergreen files ... 18
Run ldconfig ... 18
Additional Instructions for Developers .. 18
Configure the Apache Web server .. 19
Configure OpenSRF for the Evergreen application .. 20
Configure action triggers for the Evergreen application .. 21
Creating the Evergreen database .. 21
Starting Evergreen ... 23
Testing connections to Evergreen ... 23
Getting help .. 24
License .. 24

5. Upgrading the Evergreen Server ... 25
Software Prerequisites .. 25
Upgrade the Evergreen code .. 25
Upgrade the Evergreen database schema ... 27
Restart Evergreen and Test ... 29
Review Release Notes .. 30

6. Setting Up EDI Acquisitions ... 31
Introduction .. 31
Installation .. 31
Configuration .. 32
Troubleshooting .. 33

7. Migrating from a legacy system ... 35
Introduction .. 35
Making electronic resources visible in the catalog ... 35
Migrating your bibliographic records .. 36
Migrating your call numbers, copies, and parts ... 37
Migrating Patron Data .. 40

III. Individual Evergreen Components ... 44
8. Easing gently into OpenSRF .. 46

Abstract ... 46
Introducing OpenSRF ... 46
Enough jibber-jabber: writing an OpenSRF service ... 51
Getting under the covers with OpenSRF .. 63
Evergreen-specific OpenSRF services ... 66
Evergreen after one year: reflections on OpenSRF .. 67

Administering Evergreen through the Command Line 3

Summary .. 69
Appendix: Python client ... 69

9. Support Scripts .. 71
authority_control_fields: Connecting Bibliographic and Authority records ... 72
marc_export: Exporting Bibliographic Records into MARC files ... 72
Importing Authority Records from Command Line ... 74
Juvenile-to-adult batch script ... 75
MARC Stream Importer ... 75
Processing Action Triggers ... 76

10. Daemons and services ... 78
Starting and Stopping the Reporter Daemon ... 78
ebook_api service .. 79
hold-targeter service ... 79
QStore service .. 79

11. Developing with pgTAP tests ... 80
Setting up pgTAP on your development server ... 80
Running pgTAP tests ... 80

IV. System Configuration ... 81
12. Describing your people ... 83

Setting the staff user’s working location .. 83
Comparing approaches for managing permissions ... 84
Managing permissions in the staff client .. 85
Managing role-based permission groups in the staff client .. 86
Managing role-based permission groups in the database ... 89
Authentication Proxy .. 91
Patron Address City/State/County Pre-Populate by ZIP Code .. 92
Apache Rewrite Tricks ... 96
Apache Access Handler Perl Module .. 98

13. Updating translations using Launchpad .. 101
Prerequisites .. 101
Updating the translations ... 101

V. Cataloging Administration .. 103
14. Cataloging Staff Interface .. 105

Administering the Physical Characteristics Wizard .. 105
15. Cataloging timesavers and shortcuts .. 106

MARC Templates .. 106
16. Notes about the Bibliographic Schema in the Database ... 108

Bibliographic fingerprint ... 108
VI. Managing Staff from the Command Line ... 109

17. Changing passwords ... 111
VII. Patron Data .. 112

18. Aging Circulations .. 114
Global Flags ... 114
What Data is Aged? ... 114
How Circulations are Aged ... 115
Impacts on Billing Data .. 115

19. Purging holds ... 117
20. Purge User Activity .. 118

VIII. Backing up your Evergreen System ... 119
21. Database backups ... 121

Creating logical database backups .. 121
Restoring from logical database backups .. 122
Creating physical database backups with support for point-in-time recovery ... 122
Creating a replicated database .. 123

Administering Evergreen through the Command Line 4
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

IX. UX Administration ... 126
22. TPac Configuration and Customization .. 129

Template toolkit documentation ... 129
TPAC URL .. 129
Perl modules used directly by TPAC .. 129
Default templates ... 129
Apache configuration files ... 129
TPAC CSS and media files ... 130
Mapping templates to URLs .. 130
How to override templates .. 130
Changing some text in the TPAC ... 132
Troubleshooting ... 133

23. Designing your catalog .. 134
Configuring and customizing the public interface .. 134
Setting the default physical location for your library environment .. 138
Setting a default language and adding optional languages ... 139
Change Date Format in Patron Account View .. 140
Including External Content in Your Public Interface .. 140
Including Locally Hosted Content in Your Public Interface ... 145

24. Designing the patron search experience .. 147
Editing the formats select box options in the search interface .. 147
Adding and removing search fields in advanced search .. 148
Changing the display of facets and facet groups .. 148
Facilitating search scope changes ... 149
Sitemap generator .. 149
Troubleshooting TPAC errors .. 150

25. Ebook API integration ... 151
Ebook API service configuration .. 151
OverDrive API integration .. 151
OneClickdigital API integration ... 152
Additional configuration ... 153

26. Managing audio alerts ... 154
Globally silencing sounds .. 154
Self-check interface .. 154

X. Creating a New Skin: the Bare Minimum .. 155
27. Introduction ... 157
28. Apache directives ... 158
29. Customizing templates ... 159

XI. Keeping Evergreen Current and Secure .. 162
30. Introduction ... 164
31. Upgrading the Evergreen software ... 165
32. Securing the server(s) on which your Evergreen installation runs .. 166

A. Attributions .. 167
B. Admonitions ... 169
C. Licensing ... 170
Index ... 171

Administering Evergreen through the Command Line 5
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

List of Tables
7.1. 856 field for electronic resources: indicators and subfields ... 35

Administering Evergreen through the Command Line 6

Part I. Introduction

Table of Contents
1. About This Documentation ... 9
2. About Evergreen .. 10

Part I. Introduction 8

Chapter 1. About This Documentation
This guide was produced by the Evergreen Documentation Interest Group (DIG), consisting of
numerous volunteers from many different organizations. The DIG has drawn together, edited,
and supplemented pre-existing documentation contributed by libraries and consortia running
Evergreen that were kind enough to release their documentation into the creative commons. Please
see the Attributions section for a full list of authors and contributing organizations. Just like the
software it describes, this guide is a work in progress, continually revised to meet the needs of its
users, so if you find errors or omissions, please let us know, by contacting the DIG facilitators at
docs@evergreen-ils.org.

This guide to Evergreen is designed for system administrators who can access their Evergreen
server using a command line. It is organized into Parts, Chapters, and Sections addressing key
aspects of the software.

Copies of this guide can be accessed in PDF and HTML formats from http://docs.evergreen-ils.org/.

Chapter 1. About This Documentation 9

mailto:docs@evergreen-ils.org
http://docs.evergreen-ils.org/

Chapter 2. About Evergreen
Evergreen is an open source library automation software designed to meet the needs of the very
smallest to the very largest libraries and consortia. Through its staff interface, it facilitates the
management, cataloging, and circulation of library materials, and through its online public access
interface it helps patrons find those materials.

The Evergreen software is freely licensed under the GNU General Public License, meaning that it is
free to download, use, view, modify, and share. It has an active development and user community,
as well as several companies offering migration, support, hosting, and development services.

The community’s development requirements state that Evergreen must be:

• Stable, even under extreme load.

• Robust, and capable of handling a high volume of transactions and simultaneous users.

• Flexible, to accommodate the varied needs of libraries.

• Secure, to protect our patrons’ privacy and data.

• User-friendly, to facilitate patron and staff use of the system.

Evergreen, which first launched in 2006 now powers over 544 libraries of every type – public,
academic, special, school, and even tribal and home libraries – in over a dozen countries worldwide.

Chapter 2. About Evergreen 10

Part II. Installing Evergreen

Table of Contents
3. System Requirements ... 14

Server Minimum Requirements .. 14
Web Client Requirements ... 14
Staff Client Requirements ... 14

4. Installing the Evergreen server ... 15
Preamble: referenced user accounts .. 15
Preamble: developer instructions .. 15
Installing prerequisites .. 16
Extra steps for web staff client .. 17

Install dependencies for web staff client .. 17
Install files for web staff client .. 17

Configuration and compilation instructions .. 17
Installation instructions ... 18
Change ownership of the Evergreen files ... 18
Run ldconfig ... 18
Additional Instructions for Developers .. 18
Configure the Apache Web server .. 19
Configure OpenSRF for the Evergreen application .. 20
Configure action triggers for the Evergreen application .. 21
Creating the Evergreen database .. 21

Setting up the PostgreSQL server ... 21
Creating the Evergreen database and schema .. 22
Loading sample data .. 22
Creating the database on a remote server ... 23

Starting Evergreen ... 23
Testing connections to Evergreen ... 23
Getting help .. 24
License .. 24

5. Upgrading the Evergreen Server ... 25
Software Prerequisites .. 25
Upgrade the Evergreen code ... 25
Upgrade the Evergreen database schema ... 27
Restart Evergreen and Test ... 29
Review Release Notes .. 30

6. Setting Up EDI Acquisitions ... 31
Introduction .. 31
Installation .. 31

Install EDI Translator ... 31
Install EDI Scripts ... 32

Configuration .. 32
Configuring Providers .. 32
Configuring EDI Accounts .. 33
Configuring Organizational Unit SAN code ... 33

Troubleshooting .. 33
PO JEDI Template Issues ... 33

7. Migrating from a legacy system ... 35
Introduction .. 35
Making electronic resources visible in the catalog ... 35
Migrating your bibliographic records .. 36
Migrating your call numbers, copies, and parts ... 37
Migrating Patron Data .. 40

Part II. Installing Evergreen 12

Introduction .. 40
Creating an sql Script for Importing Patrons .. 42
Batch Updating Patron Data .. 43

Part II. Installing Evergreen 13
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

Chapter 3. System Requirements

Server Minimum Requirements
The following are the base requirements setting Evergreen up on a test server:

• An available desktop, server or virtual image

• 4GB RAM, or more if your server also runs a graphical desktop

• Linux Operating System (community supports Debian, Ubuntu, or Fedora)

• Ports 80 and 443 should be opened in your firewall for TCP connections to allow OPAC and staff
client connections to the Evergreen server.

Web Client Requirements
The current stable release of Firefox or Chrome is required to run the web client in a browser.

Staff Client Requirements
Staff terminals connect to the central database using the Evergreen staff client, available for
download from The Evergreen download page. The staff client must be installed on each staff
workstation and requires at minimum:

• Windows, Mac OS X, or Linux operating system

• a reliable high speed Internet connection

• 2GB RAM

• The staff client uses the TCP protocol on ports 80 and 443 to communicate with the Evergreen
server.

Barcode Scanners

Evergreen will work with virtually any barcode scanner – if it worked with your legacy system it
should work on Evergreen.

Printers

Evergreen can use any printer configured for your terminal to print receipts, check-out slips, holds
lists, etc. The single exception is spine label printing, which is still under development. Evergreen
currently formats spine labels for output to a label roll printer. If you do not have a roll printer
manual formatting may be required.

Chapter 3. System Requirements 14

Chapter 4. Installing the Evergreen server

Preamble: referenced user accounts
In subsequent sections, we will refer to a number of different accounts, as follows:

• Linux user accounts:

• The user Linux account is the account that you use to log onto the Linux system as a regular
user.

• The root Linux account is an account that has system administrator privileges. On Debian you
can switch to this account from your user account by issuing the su - command and entering
the password for the root account when prompted. On Ubuntu you can switch to this account
from your user account using the sudo su - command and entering the password for your
user account when prompted.

• The opensrf Linux account is an account that you create when installing OpenSRF. You can
switch to this account from the root account by issuing the su - opensrf command.

• The postgres Linux account is created automatically when you install the PostgreSQL database
server. You can switch to this account from the root account by issuing the su - postgres
command.

• PostgreSQL user accounts:

• The evergreen PostgreSQL account is a superuser account that you will create to connect to
the PostgreSQL database server.

• Evergreen administrator account:

• The egadmin Evergreen account is an administrator account for Evergreen that you will use to
test connectivity and configure your Evergreen instance.

Preamble: developer instructions

Skip this section if you are using an official release tarball downloaded from http://evergreen-
ils.org/egdownloads

Developers working directly with the source code from the Git repository, rather than an official
release tarball, must perform one step before they can proceed with the ./configure step.

As the user Linux account, issue the following command in the Evergreen source directory to
generate the configure script and Makefiles:
autoreconf -i

Chapter 4. Installing the Evergreen server 15

http://evergreen-ils.org/egdownloads
http://evergreen-ils.org/egdownloads

Installing prerequisites
• PostgreSQL: The minimum supported version is 9.4.

• Linux: Evergreen has been tested on Debian Stretch (9), Debian Jessie (8), Debian Wheezy (7),
Ubuntu Xenial Xerus (16.04), and Ubuntu Trusty Tahr (14.04). If you are running an older version
of these distributions, you may want to upgrade before upgrading Evergreen. For instructions on
upgrading these distributions, visit the Debian or Ubuntu websites.

• OpenSRF: The minimum supported version of OpenSRF is 3.0.0.

Evergreen has a number of prerequisite packages that must be installed before you can successfully
configure, compile, and install Evergreen.

1. Begin by installing the most recent version of OpenSRF (3.0.0 or later). You can download
OpenSRF releases from http://evergreen-ils.org/opensrf-downloads/

2. On some distributions, it is necessary to install PostgreSQL 9.4+ from external repositories.

• Debian (Wheezy) and Ubuntu (Trusty) comes with older versions of PostgreSQL, so steps are
taken to automatically utilize the PostgreSQL community’s apt sources. (For complete details,
see: https://wiki.postgresql.org/wiki/Apt)

• Debian (Jessie/Stretch) and Ubuntu (Xenial) comes with PostgreSQL 9.4+, so no additional
steps are required.

3. Issue the following commands as the root Linux account to install prerequisites using
the Makefile.install prerequisite installer, substituting debian-stretch, debian-jessie,
debian-wheezy, ubuntu-xenial, or ubuntu-trusty for <osname> below:
make -f Open-ILS/src/extras/Makefile.install <osname>

4. Add the libdbi-libdbd libraries to the system dynamic library path by issuing the following
commands as the root Linux account:

You should skip this step if installing on Ubuntu Trusty/Xenial or Debian Jessie/Stretch. The
Ubuntu and Debian Jessie/Stretch targets use libdbd-pgsql from packages.

Debian Wheezy.
echo "/usr/local/lib/dbd" > /etc/ld.so.conf.d/eg.conf
ldconfig

5. OPTIONAL: Developer additions

To perform certain developer tasks from a Git source code checkout, additional packages may
be required. As the root Linux account:

• To install packages needed for retrieving and managing web dependencies, use the
<osname>-developer Makefile.install target. Currently, this is only needed for building and
installing the (preview) browser staff client.

Chapter 4. Installing the Evergreen server 16
Report errors in this documentation using Launchpad.

http://evergreen-ils.org/opensrf-downloads/
https://wiki.postgresql.org/wiki/Apt
https://bugs.launchpad.net/evergreen/+filebug

make -f Open-ILS/src/extras/Makefile.install <osname>-developer

• To install packages required for building Evergreen translations, use the <osname>-translator
Makefile.install target.
make -f Open-ILS/src/extras/Makefile.install <osname>-translator

• To install packages required for building Evergreen release bundles, use the <osname>-
packager Makefile.install target.
make -f Open-ILS/src/extras/Makefile.install <osname>-packager

Extra steps for web staff client

Skip this entire section if you are using an official release tarball downloaded from http://
evergreen-ils.org/downloads

Install dependencies for web staff client

You may skip this section if you have installed the optional developer additions. You will still need
to do the following steps in Install files for web staff client.

1. Install the long-term stability (LTS) release of Node.js. Add the Node.js /bin directory to your
environment variable PATH.

Install files for web staff client
1. Building, Testing, Minification: The remaining steps all take place within the staff JS web root:

cd $EVERGREEN_ROOT/Open-ILS/web/js/ui/default/staff/

2. Install Project-local Dependencies. npm inspects the package.json file for dependencies and
fetches them from the Node package network.
npm install # fetch JS dependencies

3. Run the build script.
build, run tests, concat+minify
npm run build-prod
npm run test

Configuration and compilation instructions
For the time being, we are still installing everything in the /openils/ directory. From the Evergreen
source directory, issue the following commands as the user Linux account to configure and build
Evergreen:

Chapter 4. Installing the Evergreen server 17
Report errors in this documentation using Launchpad.

http://evergreen-ils.org/downloads
http://evergreen-ils.org/downloads
https://nodejs.org
https://bugs.launchpad.net/evergreen/+filebug

PATH=/openils/bin:$PATH ./configure --prefix=/openils --sysconfdir=/openils/conf
make

These instructions assume that you have also installed OpenSRF under /openils/. If not, please
adjust PATH as needed so that the Evergreen configure script can find osrf_config.

Installation instructions
1. Once you have configured and compiled Evergreen, issue the following command as the root

Linux account to install Evergreen, build the server portion of the staff client, and copy example
configuration files to /openils/conf. Change the value of the STAFF_CLIENT_STAMP_ID variable
to match the version of the staff client that you will use to connect to the Evergreen server.
make STAFF_CLIENT_STAMP_ID=rel_name install

2. The server portion of the staff client expects http://hostname/xul/server to resolve. Issue the
following commands as the root Linux account to create a symbolic link pointing to the server
subdirectory of the server portion of the staff client that we just built using the staff client ID
rel_name:
cd /openils/var/web/xul
ln -sf rel_name/server server

Change ownership of the Evergreen files
All files in the /openils/ directory and subdirectories must be owned by the opensrf user. Issue
the following command as the root Linux account to change the ownership on the files:
chown -R opensrf:opensrf /openils

Run ldconfig
On Debian Stretch, run the following command as the root user:
ldconfig

Additional Instructions for Developers

Skip this section if you are using an official release tarball downloaded from http://evergreen-
ils.org/egdownloads

Developers working directly with the source code from the Git repository, rather than an official
release tarball, need to install the Dojo Toolkit set of JavaScript libraries. The appropriate version
of Dojo is included in Evergreen release tarballs. Developers should install the Dojo 1.3.3 version
of Dojo by issuing the following commands as the opensrf Linux account:
wget http://download.dojotoolkit.org/release-1.3.3/dojo-release-1.3.3.tar.gz
tar -C /openils/var/web/js -xzf dojo-release-1.3.3.tar.gz
cp -r /openils/var/web/js/dojo-release-1.3.3/* /openils/var/web/js/dojo/.

Chapter 4. Installing the Evergreen server 18
Report errors in this documentation using Launchpad.

http://evergreen-ils.org/egdownloads
http://evergreen-ils.org/egdownloads
https://bugs.launchpad.net/evergreen/+filebug

Configure the Apache Web server
1. Use the example configuration files in Open-ILS/examples/apache/ (for Apache versions below

2.4) or Open-ILS/examples/apache_24/ (for Apache versions 2.4 or greater) to configure your
Web server for the Evergreen catalog, staff client, Web services, and administration interfaces.
Issue the following commands as the root Linux account:

Debian Wheezy.
cp Open-ILS/examples/apache/eg.conf /etc/apache2/sites-available/
cp Open-ILS/examples/apache/eg_vhost.conf /etc/apache2/
cp Open-ILS/examples/apache/eg_startup /etc/apache2/
Now set up SSL
mkdir /etc/apache2/ssl
cd /etc/apache2/ssl

Ubuntu Trusty/Xenial and Debian Jessie/Stretch.
cp Open-ILS/examples/apache_24/eg_24.conf /etc/apache2/sites-available/eg.conf
cp Open-ILS/examples/apache_24/eg_vhost_24.conf /etc/apache2/eg_vhost.conf
cp Open-ILS/examples/apache/eg_startup /etc/apache2/
Now set up SSL
mkdir /etc/apache2/ssl
cd /etc/apache2/ssl

2. The openssl command cuts a new SSL key for your Apache server. For a production server, you
should purchase a signed SSL certificate, but you can just use a self-signed certificate and accept
the warnings in the staff client and browser during testing and development. Create an SSL key
for the Apache server by issuing the following command as the root Linux account:
openssl req -new -x509 -days 365 -nodes -out server.crt -keyout server.key

3. As the root Linux account, edit the eg.conf file that you copied into place.

a. To enable access to the offline upload / execute interface from any workstation on any network,
make the following change (and note that you must secure this for a production instance):

• (Apache 2.2): Replace Allow from 10.0.0.0/8 with Allow from all

• (Apache 2.4): Replace Require host 10.0.0.0/8 with Require all granted

4. Change the user for the Apache server.

• (Debian and Ubuntu): As the root Linux account, edit /etc/apache2/envvars. Change export
APACHE_RUN_USER=www-data to export APACHE_RUN_USER=opensrf.

5. As the root Linux account, configure Apache with KeepAlive settings appropriate for Evergreen.
Higher values can improve the performance of a single client by allowing multiple requests to
be sent over the same TCP connection, but increase the risk of using up all available Apache
child processes and memory.

• (Debian and Ubuntu): Edit /etc/apache2/apache2.conf.

a. Change KeepAliveTimeout to 1.

b. Change MaxKeepAliveRequests to 100.

Chapter 4. Installing the Evergreen server 19
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

6. As the root Linux account, configure the prefork module to start and keep enough Apache servers
available to provide quick responses to clients without running out of memory. The following
settings are a good starting point for a site that exposes the default Evergreen catalogue to the
web:

Debian Wheezy (/etc/apache2/apache2.conf).
<IfModule mpm_prefork_module>
 StartServers 15
 MinSpareServers 5
 MaxSpareServers 15
 MaxClients 75
 MaxRequestsPerChild 500
</IfModule>

Ubuntu Trusty/Xenial, Debian Jessie/Stretch (/etc/apache2/mods-available/
mpm_prefork.conf).
<IfModule mpm_prefork_module>
 StartServers 15
 MinSpareServers 5
 MaxSpareServers 15
 MaxRequestWorkers 75
 MaxConnectionsPerChild 500
</IfModule>

7. (Ubuntu Trusty/Xenial, Debian Jessie/Stretch) As the root user, enable the mpm_prefork module:
a2dismod mpm_event
a2enmod mpm_prefork

8. (Debian Wheezy): As the root Linux account, enable the Evergreen site:
a2dissite default # OPTIONAL: disable the default site (the "It Works" page)
a2ensite eg.conf

(Ubuntu Trusty/Xenial, Debian Jessie/Stretch):
a2dissite 000-default # OPTIONAL: disable the default site (the "It Works" page)
a2ensite eg.conf

9. (Debian and Ubuntu): As the root Linux account, enable Apache to write to the lock directory;
this is currently necessary because Apache is running as the opensrf user:
chown opensrf /var/lock/apache2

Learn more about additional Apache options in the following sections:

• Apache Rewrite Tricks

• Apache Access Handler Perl Module

Configure OpenSRF for the Evergreen application
There are a number of example OpenSRF configuration files in /openils/conf/ that you can use
as a template for your Evergreen installation. Issue the following commands as the opensrf Linux
account:
cp -b /openils/conf/opensrf_core.xml.example /openils/conf/opensrf_core.xml

Chapter 4. Installing the Evergreen server 20
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

cp -b /openils/conf/opensrf.xml.example /openils/conf/opensrf.xml

When you installed OpenSRF, you created four Jabber users on two separate domains and edited
the opensrf_core.xml file accordingly. Please refer back to the OpenSRF README and, as the
opensrf Linux account, edit the Evergreen version of the opensrf_core.xml file using the same
Jabber users and domains as you used while installing and testing OpenSRF.

The -b flag tells the cp command to create a backup version of the destination file. The backup
version of the destination file has a tilde (~) appended to the file name, so if you have forgotten
the Jabber users and domains, you can retrieve the settings from the backup version of the files.

eg_db_config, described in Creating the Evergreen database, sets the database connection
information in opensrf.xml for you.

Configure action triggers for the Evergreen
application
Action Triggers provide hooks for the system to perform actions when a given event occurs; for
example, to generate reminder or overdue notices, the checkout.due hook is processed and events
are triggered for potential actions if there is no checkin time.

To enable the default set of hooks, issue the following command as the opensrf Linux account:
cp -b /openils/conf/action_trigger_filters.json.example /openils/conf/action_trigger_filters.json

For more information about configuring and running action triggers, see Notifications / Action
Triggers.

Creating the Evergreen database

Setting up the PostgreSQL server
For production use, most libraries install the PostgreSQL database server on a dedicated machine.
Therefore, by default, the Makefile.install prerequisite installer does not install the PostgreSQL
9 database server that is required by every Evergreen system. You can install the packages required
by Debian or Ubuntu on the machine of your choice using the following commands as the root
Linux account:

(Debian / Ubuntu) Installing PostgreSQL server packages. Each OS build target provides the
postgres server installation packages required for each operating system. To install Postgres
server packages, use the make target postgres-server-<OSTYPE>. Choose the most appropriate
command below based on your operating system.
make -f Open-ILS/src/extras/Makefile.install postgres-server-debian-stretch
make -f Open-ILS/src/extras/Makefile.install postgres-server-debian-jessie
make -f Open-ILS/src/extras/Makefile.install postgres-server-debian-wheezy
make -f Open-ILS/src/extras/Makefile.install postgres-server-ubuntu-trusty
make -f Open-ILS/src/extras/Makefile.install postgres-server-ubuntu-xenial

Chapter 4. Installing the Evergreen server 21
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

For a standalone PostgreSQL server, install the following Perl modules for your distribution as the
root Linux account:

(Debian and Ubuntu). No extra modules required for these distributions.

You need to create a PostgreSQL superuser to create and access the database. Issue the following
command as the postgres Linux account to create a new PostgreSQL superuser named evergreen.
When prompted, enter the new user’s password:
createuser -s -P evergreen

Enabling connections to the PostgreSQL database. Your PostgreSQL database may be configured
by default to prevent connections, for example, it might reject attempts to connect via TCP/IP or
from other servers. To enable TCP/IP connections from localhost, check your pg_hba.conf file,
found in the /etc/postgresql/ directory on Debian and Ubuntu. A simple way to enable TCP/IP
connections from localhost to all databases with password authentication, which would be suitable
for a test install of Evergreen on a single server, is to ensure the file contains the following entries
before any "host … ident" entries:
host all all ::1/128 md5
host all all 127.0.0.1/32 md5

When you change the pg_hba.conf file, you will need to reload PostgreSQL to make the
changes take effect. For more information on configuring connectivity to PostgreSQL, see http://
www.postgresql.org/docs/devel/static/auth-pg-hba-conf.html

Creating the Evergreen database and schema
Once you have created the evergreen PostgreSQL account, you also need to create the database
and schema, and configure your configuration files to point at the database server. Issue the
following command as the root Linux account from inside the Evergreen source directory, replacing
<user>, <password>, <hostname>, <port>, and <dbname> with the appropriate values for your
PostgreSQL database (where <user> and <password> are for the evergreen PostgreSQL account
you just created), and replace <admin-user> and <admin-pass> with the values you want for the
egadmin Evergreen administrator account:
perl Open-ILS/src/support-scripts/eg_db_config --update-config \
 --service all --create-database --create-schema --create-offline \
 --user <user> --password <password> --hostname <hostname> --port <port> \
 --database <dbname> --admin-user <admin-user> --admin-pass <admin-pass>

This creates the database and schema and configures all of the services in your /openils/conf/
opensrf.xml configuration file to point to that database. It also creates the configuration files
required by the Evergreen cgi-bin administration scripts, and sets the user name and password
for the egadmin Evergreen administrator account to your requested values.

You can get a complete set of options for eg_db_config by passing the --help parameter.

Loading sample data
If you add the --load-all-sample parameter to the eg_db_config command, a set of authority
and bibliographic records, call numbers, copies, staff and regular users, and transactions will be
loaded into your target database. This sample dataset is commonly referred to as the concerto

Chapter 4. Installing the Evergreen server 22
Report errors in this documentation using Launchpad.

http://www.postgresql.org/docs/devel/static/auth-pg-hba-conf.html
http://www.postgresql.org/docs/devel/static/auth-pg-hba-conf.html
https://bugs.launchpad.net/evergreen/+filebug

sample data, and can be useful for testing out Evergreen functionality and for creating problem
reports that developers can easily recreate with their own copy of the concerto sample data.

Creating the database on a remote server
In a production instance of Evergreen, your PostgreSQL server should be installed on a dedicated
server.

PostgreSQL 9.4 and later

To create the database instance on a remote database server running PostgreSQL 9.4 or later,
simply use the --create-database flag on eg_db_config.

Starting Evergreen
1. As the root Linux account, start the memcached and ejabberd services (if they aren’t already

running):
/etc/init.d/ejabberd start
/etc/init.d/memcached start

2. As the opensrf Linux account, start Evergreen. The -l flag in the following command is only
necessary if you want to force Evergreen to treat the hostname as localhost; if you configured
opensrf.xml using the real hostname of your machine as returned by perl -ENet::Domain
'print Net::Domain::hostfqdn() . "\n";', you should not use the -l flag.
osrf_control -l --start-all

• If you receive the error message bash: osrf_control: command not found, then your
environment variable PATH does not include the /openils/bin directory; this should have been
set in the opensrf Linux account’s .bashrc configuration file. To manually set the PATH variable,
edit the configuration file ~/.bashrc as the opensrf Linux account and add the following line:
export PATH=$PATH:/openils/bin

3. As the opensrf Linux account, generate the Web files needed by the staff client and catalogue
and update the organization unit proximity (you need to do this the first time you start Evergreen,
and after that each time you change the library org unit configuration.):
autogen.sh

4. As the root Linux account, restart the Apache Web server:
/etc/init.d/apache2 restart

If the Apache Web server was running when you started the OpenSRF services, you might not
be able to successfully log in to the OPAC or staff client until the Apache Web server is restarted.

Testing connections to Evergreen
Once you have installed and started Evergreen, test your connection to Evergreen via srfsh. As
the opensrf Linux account, issue the following commands to start srfsh and try to log onto the

Chapter 4. Installing the Evergreen server 23
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

Evergreen server using the egadmin Evergreen administrator user name and password that you
set using the eg_db_config command:
/openils/bin/srfsh
srfsh% login <admin-user> <admin-pass>

You should see a result like:
Received Data: "250bf1518c7527a03249858687714376"

Request Completed Successfully
Request Time in seconds: 0.045286

Received Data: {
 "ilsevent":0,
 "textcode":"SUCCESS",
 "desc":" ",
 "pid":21616,
 "stacktrace":"oils_auth.c:304",
 "payload":{
 "authtoken":"e5f9827cc0f93b503a1cc66bee6bdd1a",
 "authtime":420
 }

}

Request Completed Successfully
Request Time in seconds: 1.336568

If this does not work, it’s time to do some troubleshooting.

• As the opensrf Linux account, run the settings-tester.pl script to see if it finds any system
configuration problems. The script is found at Open-ILS/src/support-scripts/settings-
tester.pl in the Evergreen source tree.

• Follow the steps in the troubleshooting guide.

• If you have faithfully followed the entire set of installation steps listed here, you are probably
extremely close to a working system. Gather your configuration files and log files and contact
the Evergreen development mailing list for assistance before making any drastic changes to your
system configuration.

Getting help
Need help installing or using Evergreen? Join the mailing lists at http://evergreen-ils.org/
communicate/mailing-lists/ or contact us on the Freenode IRC network on the #evergreen channel.

License
This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to
Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

Chapter 4. Installing the Evergreen server 24
Report errors in this documentation using Launchpad.

http://evergreen-ils.org/dokuwiki/doku.php?id=troubleshooting:checking_for_errors
http://evergreen-ils.org/communicate/mailing-lists/
http://evergreen-ils.org/communicate/mailing-lists/
http://evergreen-ils.org/communicate/mailing-lists/
http://creativecommons.org/licenses/by-sa/3.0/
https://bugs.launchpad.net/evergreen/+filebug

Chapter 5. Upgrading the Evergreen Server
Before upgrading, it is important to carefully plan an upgrade strategy to minimize system
downtime and service interruptions. All of the steps in this chapter are to be completed from the
command line.

Software Prerequisites
• PostgreSQL: The minimum supported version is 9.4.

• Linux: Evergreen 3.1.1 has been tested on Debian Stretch (9.0), Debian Jessie (8.0), Debian
Wheezy (7.0), Ubuntu Xenial Xerus (16.04), and Ubuntu Trusty Tahr (14.04). If you are running
an older version of these distributions, you may want to upgrade before upgrading Evergreen.
For instructions on upgrading these distributions, visit the Debian or Ubuntu websites.

• OpenSRF: The minimum supported version of OpenSRF is 3.0.0.

In the following instructions, you are asked to perform certain steps as either the root or opensrf
user.

• Debian: To become the root user, issue the su command and enter the password of the root user.

• Ubuntu: To become the root user, issue the sudo su command and enter the password of your
current user.

To switch from the root user to a different user, issue the su - [user] command; for example, su
- opensrf. Once you have become a non-root user, to become the root user again simply issue
the exit command.

Upgrade the Evergreen code
The following steps guide you through a simplistic upgrade of a production server. You must adjust
these steps to accommodate your customizations such as catalogue skins.

1. Stop Evergreen and back up your data:

a. As root, stop the Apache web server.

b. As the opensrf user, stop all Evergreen and OpenSRF services:
osrf_control --localhost --stop-all

c. Back up the /openils directory.

2. Upgrade OpenSRF. Download and install the latest version of OpenSRF from the OpenSRF
download page.

3. As the opensrf user, download and extract Evergreen 3.1.1:

Chapter 5. Upgrading the Evergreen Server 25

https://evergreen-ils.org/opensrf-downloads/
https://evergreen-ils.org/opensrf-downloads/

wget https://evergreen-ils.org/downloads/Evergreen-ILS-3.1.1.tar.gz
tar xzf Evergreen-ILS-3.1.1.tar.gz

For the latest edition of Evergreen, check the Evergreen download page and adjust upgrading
instructions accordingly.

4. As the root user, install the prerequisites:
cd /home/opensrf/Evergreen-ILS-3.1.1

On the next command, replace [distribution] with one of these values for your distribution
of Debian or Ubuntu:

• debian-jessie for Debian Jessie (8.0) (See Bug 134222 if you want to use EDI)

• debian-wheezy for Debian Wheezy (7.0)

• ubuntu-xenial for Ubuntu Xenial Xerus (16.04) (EDI compatibility in progress)

• ubuntu-trusty for Ubuntu Trusty Tahr (14.04) (See Bug 134222 if you want to use EDI)
make -f Open-ILS/src/extras/Makefile.install [distribution]

5. As the opensrf user, configure and compile Evergreen:
cd /home/opensrf/Evergreen-ILS-3.1.1
PATH=/openils/bin:$PATH ./configure --prefix=/openils --sysconfdir=/openils/conf
make

These instructions assume that you have also installed OpenSRF under /openils/. If not, please
adjust PATH as needed so that the Evergreen configure script can find osrf_config.

6. As the root user, install Evergreen:
cd /home/opensrf/Evergreen-ILS-3.1.1
make STAFF_CLIENT_STAMP_ID=rel_3_1_1 install

7. As the root user, change all files to be owned by the opensrf user and group:
chown -R opensrf:opensrf /openils

8. As the opensrf user, update the server symlink in /openils/var/web/xul/:
cd /openils/var/web/xul/
rm server
ln -sf rel_3_1_1/server server

9. As the opensrf user, update opensrf_core.xml and opensrf.xml by copying the new example files
(/openils/conf/opensrf_core.xml.example and /openils/conf/opensrf.xml). The -b option creates a
backup copy of the old file.
cp -b /openils/conf/opensrf_core.xml.example /openils/conf/opensrf_core.xml
cp -b /openils/conf/opensrf.xml.example /openils/conf/opensrf.xml

Chapter 5. Upgrading the Evergreen Server 26
Report errors in this documentation using Launchpad.

https://evergreen-ils.org/egdownloads/
https://bugs.launchpad.net/evergreen/+bug/1342227
https://bugs.launchpad.net/evergreen/+bug/1342227
https://bugs.launchpad.net/evergreen/+filebug

Copying these configuration files will remove any customizations you have made to them.
Remember to redo your customizations after copying them.

10.As the opensrf user, update the configuration files:
cd /home/opensrf/Evergreen-ILS-3.1.1
perl Open-ILS/src/support-scripts/eg_db_config --update-config --service all \
--create-offline --database evergreen --host localhost --user evergreen --password evergreen

11.As the root user, update the Apache files:

Use the example configuration files in Open-ILS/examples/apache/ (for Apache versions below
2.4) or Open-ILS/examples/apache_24/ (for Apache versions 2.4 or greater) to configure your
Web server for the Evergreen catalog, staff client, Web services, and administration interfaces.
Issue the following commands as the root Linux account:

Copying these Apache configuration files will remove any customizations you have made
to them. Remember to redo your customizations after copying them. For example, if you
purchased an SSL certificate, you will need to edit eg.conf to point to the appropriate
SSL certificate files. The diff command can be used to show the differences between the
distribution version and your customized version. diff <customized file> <dist file>

a. Update /etc/apache2/eg_startup by copying the example from Open-ILS/examples/apache/
eg_startup.
cp /home/opensrf/Evergreen-ILS-3.1.1/Open-ILS/examples/apache/eg_startup /etc/apache2/eg_startup

b. Update /etc/apache2/eg_vhost.conf by copying the example from Open-ILS/examples/apache/
eg_vhost.conf.
cp /home/opensrf/Evergreen-ILS-3.1.1/Open-ILS/examples/apache/eg_vhost.conf /etc/apache2/eg_vhost.conf

c. Update /etc/apache2/sites-available/eg.conf by copying the example from Open-ILS/examples/
apache/eg.conf.
cp /home/opensrf/Evergreen-ILS-3.1.1/Open-ILS/examples/apache/eg.conf /etc/apache2/sites-available/eg.conf

Upgrade the Evergreen database schema

The upgrade of the Evergreen database schema is the lengthiest part of the upgrade process for
sites with a significant amount of production data.

Before running the upgrade script against your production Evergreen database, back up your
database, restore it to a test server, and run the upgrade script against the test server. This enables

Chapter 5. Upgrading the Evergreen Server 27
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

you to determine how long the upgrade will take and whether any local customizations present
problems for the stock upgrade script that require further tailoring of the upgrade script. The backup
also enables you to cleanly restore your production data if anything goes wrong during the upgrade.

Evergreen provides incremental upgrade scripts that allow you to upgrade from one minor
version to the next until you have the current version of the schema. For example, if you want
to upgrade from 2.9.0 to 2.11.0, you would run the following upgrade scripts:

• 2.9.0-2.9.1-upgrade-db.sql

• 2.9.1-2.9.2-upgrade-db.sql

• 2.9.2-2.9.3-upgrade-db.sql

• 2.9.3-2.10.0-upgrade-db.sql (this is a major version upgrade)

• 2.10.0-2.10.1-upgrade-db.sql

• 2.10.1-2.10.2-upgrade-db.sql

• 2.10.2-2.10.3-upgrade-db.sql

• 2.10.3-2.10.4-upgrade-db.sql

• 2.10.4-2.10.5-upgrade-db.sql

• 2.10.5-2.10.6-upgrade-db.sql

• 2.10.6-2.10.7-upgrade-db.sql

• 2.10.7-2.11.0-upgrade-db.sql (this is a major version upgrade)

Note that you do not necessarily want to run additional upgrade scripts to upgrade to the newest
version, since currently there is no automated way, for example to upgrade from 2.9.4+ to 2.10.
Only upgrade as far as necessary to reach the major version upgrade script (in this example,
as far as 2.9.3).

Pay attention to error output as you run the upgrade scripts. If you encounter errors that
you cannot resolve yourself through additional troubleshooting, please report the errors to the
Evergreen Technical Discussion List.

Run the following steps (including other upgrade scripts, as noted above) as a user with the ability
to connect to the database server.
cd /home/opensrf/Evergreen-ILS-3.1.1/Open-ILS/src/sql/Pg
psql -U evergreen -h localhost -f version-upgrade/3.1.0-3.1.1-upgrade-db.sql evergreen

After the some database upgrade scripts finish, you may see a note on how to reingest your
bib records. You may run this after you have completed the entire upgrade and tested your

Chapter 5. Upgrading the Evergreen Server 28
Report errors in this documentation using Launchpad.

https://evergreen-ils.org/communicate/mailing-lists/
https://bugs.launchpad.net/evergreen/+filebug

system. Reingesting records may take a long time depending on the number of bib records in
your system.

Restart Evergreen and Test
1. As the root user, restart memcached to clear out all old user sessions.

service memcached restart

2. As the opensrf user, start all Evergreen and OpenSRF services:

osrf_control --localhost --start-all

3. As the opensrf user, run autogen to refresh the static organizational data files:

cd /openils/bin
./autogen.sh

4. Start srfsh and try logging in using your Evergreen username and password:

/openils/bin/srfsh
srfsh% login username password

You should see a result like:

Received Data: "250bf1518c7527a03249858687714376"

 Request Completed Successfully
 Request Time in seconds: 0.045286

 Received Data: {
 "ilsevent":0,
 "textcode":"SUCCESS",
 "desc":" ",
 "pid":21616,
 "stacktrace":"oils_auth.c:304",
 "payload":{
 "authtoken":"e5f9827cc0f93b503a1cc66bee6bdd1a",
 "authtime":420
 }

 }

 Request Completed Successfully
 Request Time in seconds: 1.336568

If this does not work, it’s time to do some troubleshooting.

5. As the root user, start the Apache web server.

If you encounter errors, refer to the troubleshooting section of this documentation for tips on
finding solutions and seeking further assistance from the Evergreen community.

Chapter 5. Upgrading the Evergreen Server 29
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

Review Release Notes
Review this version’s release notes for other tasks that need to be done after upgrading. If you
have upgraded over several major versions, you will need to review the release notes for each
version also.

Chapter 5. Upgrading the Evergreen Server 30
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

Chapter 6. Setting Up EDI Acquisitions

Introduction
Electronic Data Interchange (EDI) is used to exchange information between participating vendors
and Evergreen. This chapter contains technical information for installation and configuration of the
components necessary to run EDI Acquisitions for Evergreen.

Installation
Install EDI Translator
The EDI Translator is used to convert data into EDI format. It runs on localhost and listens on port
9191 by default. This is controlled via the edi_webrick.cnf file located in the edi_translator directory.
It should not be necessary to edit this configuration if you install EDI Translator on the same server
used for running Action/Triggers events.

If you are running Evergreen with a multi-server configuration, make sure to install EDI Translator
on the same server used for Action/Trigger event generation.

Steps for Installing
1. As the opensrf user, copy the EDI Translator code found in Open-ILS/src/edi_translator to

somewhere accessible (for example, /openils/var/edi):
cp -r Open-ILS/src/edi_translator /openils/var/edi

2. Navigate to where you have saved the code to begin next step:
cd /openils/var/edi

3. Next, as the root user (or a user with sudo rights), install the dependencies, via "install.sh". This
will perform some apt-get routines to install the code needed for the EDI translator to function.
(Note: subversion must be installed first)
./install.sh

4. Now, we’re ready to start "edi_webrick.bash" which is the script that calls the "Ruby" code
to translate EDI. This script needs to be started in order for EDI to function so please take
appropriate measures to ensure this starts following reboots/upgrades/etc. As the opensrf user:
./edi_webrick.bash

5. You can check to see if EDI translator is running.

• Using the command "ps aux | grep edi" should show you something similar if the script is
running properly:
root 30349 0.8 0.1 52620 10824 pts/0 S 13:04 0:00 ruby ./edi_webrick.rb

Chapter 6. Setting Up EDI Acquisitions 31

• To shutdown EDI Translator you can use something like pkill (assuming no other ruby processes
are running on that server):
kill -INT $(pgrep ruby)

Install EDI Scripts
The EDI scripts are "edi_pusher.pl" and "edi_fetcher.pl" and are used to "push" and "fetch" EDI
messages for configured EDI accounts.

1. As the opensrf user, copy edi_pusher.pl and edi_fetcher.pl from Open-ILS/src/support-scripts
into /openils/bin:
cp Open-ILS/src/support-scripts/edi_pusher.pl /openils/bin
cp Open-ILS/src/support-scripts/edi_fetcher.pl /openils/bin

2. Setup the edi_pusher.pl and edi_fetcher.pl scripts to run as cron jobs in order to regularly push
and receive EDI messages.

• Add to the opensrf user’s crontab the following entries:
10 * * * * cd /openils/bin && /usr/bin/perl ./edi_pusher.pl > /dev/null
0 1 * * * cd /openils/bin && /usr/bin/perl ./edi_fetcher.pl > /dev/null

• The example for edi_pusher.pl sets the script to run at 10 minutes past the hour, every hour.

• The example for edi_fetcher.pl sets the script to run at 1 AM every night.

You may choose to run the EDI scripts more or less frequently based on the necessary response
times from your vendors.

Configuration
Configuring Providers
Look in Administration → Acquisitions Administration → Providers

Column Description/Notes
Provider Name A unique name to identify the provider
Code A unique code to identify the provider
Owner The org unit who will "own" the provider.
Currency The currency format the provider accepts
Active Whether or not the Provider is "active" for use
Default Claim Policy ??
EDI Default The default "EDI Account" to use (see EDI Accounts

Configuration)
Email The email address for the provider

Chapter 6. Setting Up EDI Acquisitions 32
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

Column Description/Notes
Fax Phone A fax number for the provider
Holdings Tag The holdings tag to be utilized (usually 852, for

Evergreen)
Phone A phone number for the provider
Prepayment Required Whether or not prepayment is required
SAN The vendor provided, org unit specific SAN code
URL The vendor website

Configuring EDI Accounts
Look in Administration → Acquisitions Administration → EDI Accounts

Column Description/Notes
Label A unique name to identify the provider
Host FTP/SFTP/SSH hostname - vendor assigned
Username FTP/SFTP/SSH username - vendor assigned
Password FTP/SFTP/SSH password - vendor assigned
Account Vendor assigned account number associated with

your organization
Owner The organizational unit who owns the EDI account
Last Activity The date of last activity for the account
Provider This is a link to one of the "codes" in the "Providers"

interface
Path The path on the vendor’s server where Evergreen

will send it’s outgoing .epo files
Incoming Directory The path on the vendor’s server where

"incoming" .epo files are stored
Vendor Account Number Vendor assigned account number.
Vendor Assigned Code Usually a sub-account designation. Can be used with

or without the Vendor Account Number.

Configuring Organizational Unit SAN code
Look in Administration → Server Administration → Organizational Units

This interface allows a library to configure their SAN, alongside their address, phone, etc.

Troubleshooting

PO JEDI Template Issues
Some libraries may run into issues with the action/trigger (PO JEDI). The template has to be modified
to handle different vendor codes that may be used. For instance, if you use "ingra" instead of

Chapter 6. Setting Up EDI Acquisitions 33
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

INGRAM this may cause a problem because they are hardcoded in the template. The following is
an example of one modification that seems to work.

Original template has:
"buyer":[
 [% IF target.provider.edi_default.vendcode && (target.provider.code == 'BT' ||
 target.provider.name.match('(?i)^BAKER & TAYLOR')) -%]
 {"id-qualifier": 91, "id":"[% target.ordering_agency.mailing_address.san _ ' ' _
 target.provider.edi_default.vendcode %]"}
 [%- ELSIF target.provider.edi_default.vendcode && target.provider.code == 'INGRAM' -%]
 {"id":"[% target.ordering_agency.mailing_address.san %]"},
 {"id-qualifier": 91, "id":"[% target.provider.edi_default.vendcode %]"}
 [%- ELSE -%]
 {"id":"[% target.ordering_agency.mailing_address.san %]"}
 [%- END -%]
],

Modified template has the following where it matches on provider SAN instead of code:
"buyer":[
 [% IF target.provider.edi_default.vendcode && (target.provider.san == '1556150') -%]
 {"id-qualifier": 91, "id":"[% target.ordering_agency.mailing_address.san _ ' ' _
 target.provider.edi_default.vendcode %]"}
 {"id-qualifier": 91, "id":"[% target.ordering_agency.mailing_address.san _ ' ' _
 target.provider.edi_default.vendcode %]"}
 [%- ELSIF target.provider.edi_default.vendcode && (target.provider.san == '1697978') -%]
 {"id":"[% target.ordering_agency.mailing_address.san %]"},
 {"id-qualifier": 91, "id":"[% target.provider.edi_default.vendcode %]"}
 [%- ELSE -%]
 {"id":"[% target.ordering_agency.mailing_address.san %]"}
 [%- END -%]
],

Chapter 6. Setting Up EDI Acquisitions 34
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

Chapter 7. Migrating from a legacy system

Introduction
When you migrate to Evergreen, you generally want to migrate the bibliographic records and copy
information that existed in your previous library system. For anything more than a few thousand
records, you should import the data directly into the database rather than use the tools in the
staff client. While the data that you can extract from your legacy system varies widely, this section
assumes that you or members of your team have the ability to write scripts and are comfortable
working with SQL to manipulate data within PostgreSQL. If so, then the following section will guide
you towards a method of generating common data formats so that you can then load the data into
the database in bulk.

Making electronic resources visible in the catalog
Electronic resources generally do not have any call number or copy information associated with
them, and Evergreen enables you to easily make bibliographic records visible in the public
catalog within sections of the organizational unit hierarchy. For example, you can make a set
of bibliographic records visible only to specific branches that have purchased licenses for the
corresponding resources, or you can make records representing publicly available electronic
resources visible to the entire consortium.

Therefore, to make a record visible in the public catalog, modify the records using your preferred
MARC editing approach to ensure the 856 field contains the following information before loading
records for electronic resources into Evergreen:

Table 7.1. 856 field for electronic resources: indicators and subfields
Attribute Value Note
Indicator 1 4
Indicator 2 0 or 1
Subfield u URL for the electronic resource
Subfield y Text content of the link
Subfield z Public note Normally displayed after the

link
Subfield 9 Organizational unit short name The record will be visible

when a search is performed
specifying this organizational
unit or one of its children. You
can repeat this subfield as
many times as you need.

Once your electronic resource bibliographic records have the required indicators and subfields for
each 856 field in the record, you can proceed to load the records using either the command-line
bulk import method or the MARC Batch Importer in the staff client.

Chapter 7. Migrating from a legacy system 35

Migrating your bibliographic records
Convert your MARC21 binary records into the MARCXML format, with one record per line. You can
use the following Python script to achieve this goal; just install the pymarc library first, and adjust
the values of the input and output variables as needed.
#!/usr/bin/env python
-*- coding: utf-8 -*-
import codecs
import pymarc

input = 'records_in.mrc'
output = 'records_out.xml'

reader = pymarc.MARCReader(open(input, 'rb'), to_unicode=True)
writer = codecs.open(output, 'w', 'utf-8')
for record in reader:
 record.leader = record.leader[:9] + 'a' + record.leader[10:]
 writer.write(pymarc.record_to_xml(record) + "\n")

Once you have a MARCXML file with one record per line, you can load the records into your
Evergreen system via a staging table in your database.

1. Connect to the PostgreSQL database using the psql command. For example:
psql -U <user-name> -h <hostname> -d <database>

2. Create a staging table in the database. The staging table is a temporary location for the raw data
that you will load into the production table or tables. Issue the following SQL statement from the
psql command line, adjusting the name of the table from staging_records_import, if desired:
CREATE TABLE staging_records_import (id BIGSERIAL, dest BIGINT, marc TEXT);

3. Create a function that will insert the new records into the production table and update the dest
column of the staging table. Adjust "staging_records_import" to match the name of the staging
table that you plan to create when you issue the following SQL statement:
CREATE OR REPLACE FUNCTION staging_importer() RETURNS VOID AS $$
DECLARE stage RECORD;
BEGIN
FOR stage IN SELECT * FROM staging_records_import ORDER BY id LOOP
 INSERT INTO biblio.record_entry (marc, last_xact_id) VALUES (stage.marc, 'IMPORT');
 UPDATE staging_records_import SET dest = currval('biblio.record_entry_id_seq')
 WHERE id = stage.id;
 END LOOP;
 END;
 $$ LANGUAGE plpgsql;

4. Load the data from your MARCXML file into the staging table using the COPY statement, adjusting
for the name of the staging table and the location of your MARCXML file:
COPY staging_records_import (marc) FROM '/tmp/records_out.xml';

5. Load the data from your staging table into the production table by invoking your staging function:
SELECT staging_importer();

When you leave out the id value for a BIGSERIAL column, the value in the column automatically
increments for each new record that you add to the table.

Chapter 7. Migrating from a legacy system 36
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

Once you have loaded the records into your Evergreen system, you can search for some known
records using the staff client to confirm that the import was successful.

Migrating your call numbers, copies, and parts
Holdings, comprised of call numbers, copies, and parts, are the set of objects that enable users to
locate and potentially acquire materials from your library system.

Call numbers connect libraries to bibliographic records. Each call number has a label associated
with a classification scheme such as a the Library of Congress or Dewey Decimal systems, and can
optionally have either or both a label prefix and a label suffix. Label prefixes and suffixes do not
affect the sort order of the label.

Copies connect call numbers to particular instances of that resource at a particular library. Each
copy has a barcode and must exist in a particular copy location. Other optional attributes of copies
include circulation modifier, which may affect whether that copy can circulate or for how long it
can circulate, and OPAC visibility, which controls whether that particular copy should be visible in
the public catalog.

Parts provide more granularity for copies, primarily to enable patrons to place holds on individual
parts of a set of items. For example, an encyclopedia might be represented by a single bibliographic
record, with a single call number representing the label for that encyclopedia at a given library,
with 26 copies representing each letter of the alphabet, with each copy mapped to a different part
such as A, B, C, … Z.

To migrate this data into your Evergreen system, you will create another staging table in the
database to hold the raw data for your materials from which the actual call numbers, copies, and
parts will be generated.

Begin by connecting to the PostgreSQL database using the psql command. For example:
psql -U <user-name> -h <hostname> -d <database>

Create the staging materials table by issuing the following SQL statement:
CREATE TABLE staging_materials (
 bibkey BIGINT, -- biblio.record_entry_id
 callnum TEXT, -- call number label
 callnum_prefix TEXT, -- call number prefix
 callnum_suffix TEXT, -- call number suffix
 callnum_class TEXT, -- classification scheme
 create_date DATE,
 location TEXT, -- shelving location code
 item_type TEXT, -- circulation modifier code
 owning_lib TEXT, -- org unit code
 barcode TEXT, -- copy barcode
 part TEXT
);

For the purposes of this example migration of call numbers, copies, and parts, we assume that you
are able to create a tab-delimited file containing values that map to the staging table properties,
with one copy per line. For example, the following 5 lines demonstrate how the file could look
for 5 different copies, with non-applicable attribute values represented by \N, and 3 of the copies
connected to a single call number and bibliographic record via parts:

Chapter 7. Migrating from a legacy system 37
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

1 QA 76.76 A3 \N \N LC 2012-12-05 STACKS BOOK BR1 30007001122620 \N
2 GV 161 V8 Ref. Juv. LC 2010-11-11 KIDS DVD BR2 30007005197073 \N
3 AE 5 E363 1984 \N \N LC 1984-01-10 REFERENCE BOOK BR1 30007006853385 A
3 AE 5 E363 1984 \N \N LC 1984-01-10 REFERENCE BOOK BR1 30007006853393 B
3 AE 5 E363 1984 \N \N LC 1984-01-10 REFERENCE BOOK BR1 30007006853344 C

Once your holdings are in a tab-delimited format—which, for the purposes of this example, we will
name holdings.tsv--you can import the holdings file into your staging table. Copy the contents of
the holdings file into the staging table using the COPY SQL statement:
COPY staging_items (bibkey, callnum, callnum_prefix,
 callnum_suffix, callnum_class, create_date, location,
 item_type, owning_lib, barcode, part) FROM 'holdings.tsv';

Generate the copy locations you need to represent your holdings:
INSERT INTO asset.copy_location (name, owning_lib)
 SELECT DISTINCT location, 1 FROM staging_materials
 WHERE NOT EXISTS (
 SELECT 1 FROM asset.copy_location
 WHERE name = location
);

Generate the circulation modifiers you need to represent your holdings:
INSERT INTO config.circ_modifier (code, name, description, sip2_media_type)
 SELECT DISTINCT circmod, circmod, circmod, '001'
 FROM staging_materials
 WHERE NOT EXISTS (
 SELECT 1 FROM config.circ_modifier
 WHERE circmod = code
);

Generate the call number prefixes and suffixes you need to represent your holdings:
INSERT INTO asset.call_number_prefix (owning_lib, label)
 SELECT DISTINCT aou.id, callnum_prefix
 FROM staging_materials sm
 INNER JOIN actor.org_unit aou
 ON aou.shortname = sm.owning_lib
 WHERE NOT EXISTS (
 SELECT 1 FROM asset.call_number_prefix acnp
 WHERE callnum_prefix = acnp.label
 AND aou.id = acnp.owning_lib
) AND callnum_prefix IS NOT NULL;

INSERT INTO asset.call_number_suffix (owning_lib, label)
 SELECT DISTINCT aou.id, callnum_suffix
 FROM staging_materials sm
 INNER JOIN actor.org_unit aou
 ON aou.shortname = sm.owning_lib
 WHERE NOT EXISTS (
 SELECT 1 FROM asset.call_number_suffix acns
 WHERE callnum_suffix = acns.label
 AND aou.id = acns.owning_lib
) AND callnum_suffix IS NOT NULL;

Generate the call numbers for your holdings:
INSERT INTO asset.call_number (
 creator, editor, record, owning_lib, label, prefix, suffix, label_class
)
 SELECT DISTINCT 1, 1, bibkey, aou.id, callnum, acnp.id, acns.id,
 CASE WHEN callnum_class = 'LC' THEN 1

Chapter 7. Migrating from a legacy system 38
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

 WHEN callnum_class = 'DEWEY' THEN 2
 END
 FROM staging_materials sm
 INNER JOIN actor.org_unit aou
 ON aou.shortname = owning_lib
 INNER JOIN asset.call_number_prefix acnp
 ON COALESCE(acnp.label, '') = COALESCE(callnum_prefix, '')
 INNER JOIN asset.call_number_suffix acns
 ON COALESCE(acns.label, '') = COALESCE(callnum_suffix, '')
;

Generate the copies for your holdings:

INSERT INTO asset.copy (
 circ_lib, creator, editor, call_number, location,
 loan_duration, fine_level, barcode
)
 SELECT DISTINCT aou.id, 1, 1, acn.id, acl.id, 2, 2, barcode
 FROM staging_materials sm
 INNER JOIN actor.org_unit aou
 ON aou.shortname = sm.owning_lib
 INNER JOIN asset.copy_location acl
 ON acl.name = sm.location
 INNER JOIN asset.call_number acn
 ON acn.label = sm.callnum
 WHERE acn.deleted IS FALSE
;

Generate the parts for your holdings. First, create the set of parts that are required for each record
based on your staging materials table:

INSERT INTO biblio.monograph_part (record, label)
 SELECT DISTINCT bibkey, part
 FROM staging_materials sm
 WHERE part IS NOT NULL AND NOT EXISTS (
 SELECT 1 FROM biblio.monograph_part bmp
 WHERE sm.part = bmp.label
 AND sm.bibkey = bmp.record
);

Now map the parts for each record to the specific copies that you added:

INSERT INTO asset.copy_part_map (target_copy, part)
 SELECT DISTINCT acp.id, bmp.id
 FROM staging_materials sm
 INNER JOIN asset.copy acp
 ON acp.barcode = sm.barcode
 INNER JOIN biblio.monograph_part bmp
 ON bmp.record = sm.bibkey
 WHERE part IS NOT NULL
 AND part = bmp.label
 AND acp.deleted IS FALSE
 AND NOT EXISTS (
 SELECT 1 FROM asset.copy_part_map
 WHERE target_copy = acp.id
 AND part = bmp.id
);

At this point, you have loaded your bibliographic records, call numbers, call number prefixes and
suffixes, copies, and parts, and your records should be visible to searches in the public catalog
within the appropriate organization unit scope.

Chapter 7. Migrating from a legacy system 39
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

Migrating Patron Data

Introduction

This section will explain the task of migrating your patron data from comma delimited files into
Evergreen. It does not deal with the process of exporting from the non-Evergreen system since this
process may vary depending on where you are extracting your patron records. Patron could come
from an ILS or it could come from a student database in the case of academic records.

When importing records into Evergreen you will need to populate 3 tables in your Evergreen
database:

• actor.usr - The main table for user data

• actor.card - Stores the barcode for users; Users can have more than 1 card but only 1 can be
active at a given time;

• actor.usr_address - Used for storing address information; A user can have more than one address.

Before following the procedures below to import patron data into Evergreen, it is a good idea to
examine the fields in these tables in order to decide on a strategy for data to include in your import.
It is important to understand the data types and constraints on each field.

1. Export the patron data from your existing ILS or from another source into a comma delimited file.
The comma delimited file used for importing the records should use Unicode (UTF8) character
encoding.

2. Create a staging table. A staging table will allow you to tweak the data before importing. Here
is an example sql statement:
 CREATE TABLE students (
 student_id int, barcode text, last_name text, first_name text, email text,
 address_type text, street1 text, street2 text,
 city text, province text, country text, postal_code text, phone text, profile
 int DEFAULT 2, ident_type int, home_ou int, claims_returned_count int DEFAULT
 0, usrname text, net_access_level int DEFAULT 2, password text
);

The default variables allow you to set default for your library or to populate required fields in
Evergreen if your data includes NULL values.

The data field profile in the above SQL script refers to the user group and should be an integer
referencing the id field in permission.grp_tree. Setting this value will affect the permissions for
the user. See the values in permission.grp_tree for possibilities.

ident_type is the identification type used for identifying users. This is a integer value referencing
config.identification_type and should match the id values of that table. The default values are 1
for Drivers License, 2 for SSN or 3 for other.

Chapter 7. Migrating from a legacy system 40
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

home_ou is the home organizational unit for the user. This value needs to match the
corresponding id in the actor.org_unit table.

3. Copy records into staging table from a comma delimited file.
 COPY students (student_id, last_name, first_name, email, address_type, street1, street2,
 city, province, country, postal_code, phone)
 FROM '/home/opensrf/patrons.csv'
 WITH CSV HEADER;

The script will vary depending on the format of your patron load file (patrons.csv).

4. Formatting of some fields to fit Evergreen filed formatting may be required. Here is an example
of sql to adjust phone numbers in the staging table to fit the evergreen field:
 UPDATE students phone = replace(replace(replace(rpad(substring(phone from 1 for 9), 10, '-') ||
 substring(phone from 10), '(', ''), ')', ''), ' ', '-');

Data “massaging” will be required to fit formats used in Evergreen.

5. Insert records from the staging table into the actor.usr Evergreen table:
 INSERT INTO actor.usr (
 profile, usrname, email, passwd, ident_type, ident_value, first_given_name,
 family_name, day_phone, home_ou, claims_returned_count, net_access_level)
 SELECT profile, students.usrname, email, password, ident_type, student_id,
 first_name, last_name, phone, home_ou, claims_returned_count, net_access_level
 FROM students;

6. Insert records into actor.card from actor.usr .
 INSERT INTO actor.card (usr, barcode)
 SELECT actor.usr.id, students.barcode
 FROM students
 INNER JOIN actor.usr
 ON students.usrname = actor.usr.usrname;

This assumes a one to one card patron relationship. If your patron data import has multiple cards
assigned to one patron more complex import scripts may be required which look for inactive
or active flags.

7. Update actor.usr.card field with actor.card.id to associate active card with the user:
 UPDATE actor.usr
 SET card = actor.card.id
 FROM actor.card
 WHERE actor.card.usr = actor.usr.id;

8. Insert records into actor.usr_address to add address information for users:
 INSERT INTO actor.usr_address (usr, street1, street2, city, state, country, post_code)
 SELECT actor.usr.id, students.street1, students.street2, students.city, students.province,
 students.country, students.postal_code
 FROM students
 INNER JOIN actor.usr ON students.usrname = actor.usr.usrname;

9. Update actor.usr.address with address id from address table.

 UPDATE actor.usr
 SET mailing_address = actor.usr_address.id, billing_address = actor.usr_address.id

Chapter 7. Migrating from a legacy system 41
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

 FROM actor.usr_address
 WHERE actor.usr.id = actor.usr_address.usr;

This assumes 1 address per patron. More complex scenarios may require more sophisticated SQL.

Creating an sql Script for Importing Patrons
The procedure for importing patron can be automated with the help of an sql script. Follow these
steps to create an import script:

1. Create an new file and name it import.sql

2. Edit the file to look similar to this:

 BEGIN;

 -- Remove any old staging table.
 DROP TABLE IF EXISTS students;

 -- Create staging table.
 CREATE TABLE students (
 student_id text, barcode text, last_name text, first_name text, email text, address_type text,
 street1 text, street2 text, city text, province text, country text, postal_code text, phone
 text, profile int, ident_type int, home_ou int, claims_returned_count int DEFAULT 0, usrname
 text,
 net_access_level int DEFAULT 2, password text, already_exists boolean DEFAULT FALSE
);

 --Copy records from your import text file
 COPY students (student_id, last_name, first_name, email, address_type, street1, street2, city, province,
 country, postal_code, phone, password)
 FROM '/home/opensrf/patrons.csv' WITH CSV HEADER;

 --Determine which records are new, and which are merely updates of existing patrons
 --You may with to also add a check on the home_ou column here, so that you don't
 --accidentaly overwrite the data of another library in your consortium.
 --You may also use a different matchpoint than actor.usr.ident_value.
 UPDATE students
 SET already_exists = TRUE
 FROM actor.usr
 WHERE students.student_id = actor.usr.ident_value;

 --Update the names of existing patrons, in case they have changed their name
 UPDATE actor.usr
 SET first_given_name = students.first_name, family_name=students.last_name
 FROM students
 WHERE actor.usr.ident_value=students.student_id
 AND (first_given_name != students.first_name OR family_name != students.last_name)
 AND students.already_exists;

 --Update email addresses of existing patrons
 --You may wish to update other fields as well, while preserving others
 --actor.usr.passwd is an example of a field you may not wish to update,
 --since patrons may have set the password to something other than the
 --default.
 UPDATE actor.usr
 SET email=students.email
 FROM students
 WHERE actor.usr.ident_value=students.student_id
 AND students.email != ''
 AND actor.usr.email != students.email
 AND students.already_exists;

 --Insert records from the staging table into the actor.usr table.

Chapter 7. Migrating from a legacy system 42
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

 INSERT INTO actor.usr (
 profile, usrname, email, passwd, ident_type, ident_value, first_given_name, family_name,
 day_phone, home_ou, claims_returned_count, net_access_level)
 SELECT profile, students.usrname, email, password, ident_type, student_id, first_name,
 last_name, phone, home_ou, claims_returned_count, net_access_level
 FROM students WHERE NOT already_exists;

 --Insert records from the staging table into the actor.card table.
 INSERT INTO actor.card (usr, barcode)
 SELECT actor.usr.id, students.barcode
 FROM students
 INNER JOIN actor.usr
 ON students.usrname = actor.usr.usrname
 WHERE NOT students.already_exists;

 --Update actor.usr.card field with actor.card.id to associate active card with the user:
 UPDATE actor.usr
 SET card = actor.card.id
 FROM actor.card
 WHERE actor.card.usr = actor.usr.id;

 --INSERT records INTO actor.usr_address from staging table.
 INSERT INTO actor.usr_address (usr, street1, street2, city, state, country, post_code)
 SELECT actor.usr.id, students.street1, students.street2, students.city, students.province,
 students.country, students.postal_code
 FROM students
 INNER JOIN actor.usr ON students.usrname = actor.usr.usrname
 WHERE NOT students.already_exists;

 --Update actor.usr mailing address with id from actor.usr_address table.:
 UPDATE actor.usr
 SET mailing_address = actor.usr_address.id, billing_address = actor.usr_address.id
 FROM actor.usr_address
 WHERE actor.usr.id = actor.usr_address.usr;

 COMMIT;

Placing the sql statements between BEGIN; and COMMIT; creates a transaction block so that if any
sql statements fail, the entire process is canceled and the database is rolled back to its original
state. Lines beginning with — are comments to let you you what each sql statement is doing and
are not processed.

Batch Updating Patron Data
For academic libraries, doing batch updates to add new patrons to the Evergreen database is a
critical task. The above procedures and import script can be easily adapted to create an update
script for importing new patrons from external databases. If the data import file contains only new
patrons, then, the above procedures will work well to insert those patrons. However, if the data load
contains all patrons, a second staging table and a procedure to remove existing patrons from that
second staging table may be required before importing the new patrons. Moreover, additional steps
to update address information and perhaps delete inactive patrons may also be desired depending
on the requirements of the institution.

After developing the scripts to import and update patrons have been created, another important
task for library staff is to develop an import strategy and schedule which suits the needs of the
library. This could be determined by registration dates of your institution in the case of academic
libraries. It is important to balance the convenience of patron loads and the cost of processing
these loads vs staff adding patrons manually.

Chapter 7. Migrating from a legacy system 43
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

Part III. Individual Evergreen Components

Table of Contents
8. Easing gently into OpenSRF .. 46

Abstract ... 46
Introducing OpenSRF ... 46

Programming language support .. 46
OpenSRF communication flows over XMPP .. 47
OpenSRF communication flows over HTTP ... 47
Stateless and stateful connections ... 49

Enough jibber-jabber: writing an OpenSRF service ... 51
Registering a service with the OpenSRF configuration files .. 52
Calling an OpenSRF method ... 54
Accepting and returning more interesting data types .. 57
Accepting and returning Evergreen objects .. 57
Returning streaming results ... 60
Error! Warning! Info! Debug! ... 60
Caching results: one secret of scalability ... 62
Initializing the service and its children: child labour .. 62
Retrieving configuration settings .. 63

Getting under the covers with OpenSRF ... 63
Get on the messaging bus - safely .. 64
Message body format ... 64
Registering OpenSRF methods in depth .. 65

Evergreen-specific OpenSRF services ... 66
Evergreen after one year: reflections on OpenSRF .. 67

Strengths of OpenSRF .. 68
Weaknesses .. 68

Summary .. 69
Appendix: Python client ... 69

9. Support Scripts .. 71
authority_control_fields: Connecting Bibliographic and Authority records ... 72
marc_export: Exporting Bibliographic Records into MARC files ... 72

Options .. 73
Importing Authority Records from Command Line ... 74
Juvenile-to-adult batch script ... 75
MARC Stream Importer ... 75
Processing Action Triggers ... 76

10. Daemons and services ... 78
Starting and Stopping the Reporter Daemon ... 78

Starting the Reporter Daemon ... 78
Stopping the Reporter Daemon .. 78

ebook_api service .. 79
hold-targeter service ... 79
QStore service .. 79

11. Developing with pgTAP tests ... 80
Setting up pgTAP on your development server ... 80
Running pgTAP tests ... 80

Part III. Individual Evergreen Components 45

Chapter 8. Easing gently into OpenSRF

Abstract
The Evergreen open-source library system serves library consortia composed of hundreds of
branches with millions of patrons - for example, the Georgia Public Library Service PINES system.
One of the claimed advantages of Evergreen over alternative integrated library systems is the
underlying Open Service Request Framework (OpenSRF, pronounced "open surf") architecture. This
article introduces OpenSRF, demonstrates how to build OpenSRF services through simple code
examples, and explains the technical foundations on which OpenSRF is built.

Introducing OpenSRF
OpenSRF is a message routing network that offers scalability and failover support for individual
services and entire servers with minimal development and deployment overhead. You can use
OpenSRF to build loosely-coupled applications that can be deployed on a single server or on clusters
of geographically distributed servers using the same code and minimal configuration changes.
Although copyright statements on some of the OpenSRF code date back to Mike Rylander’s original
explorations in 2000, Evergreen was the first major application to be developed with, and to take full
advantage of, the OpenSRF architecture starting in 2004. The first official release of OpenSRF was
0.1 in February 2005 (http://evergreen-ils.org/blog/?p=21), but OpenSRF’s development continues
a steady pace of enhancement and refinement, with the release of 1.0.0 in October 2008 and the
most recent release of 1.2.2 in February 2010.

OpenSRF is a distinct break from the architectural approach used by previous library systems and
has more in common with modern Web applications. The traditional "scale-up" approach to serve
more transactions is to purchase a server with more CPUs and more RAM, possibly splitting the
load between a Web server, a database server, and a business logic server. Evergreen, however, is
built on the Open Service Request Framework (OpenSRF) architecture, which firmly embraces the
"scale-out" approach of spreading transaction load over cheap commodity servers. The initial GPLS
PINES hardware cluster, while certainly impressive, may have offered the misleading impression
that Evergreen is complex and requires a lot of hardware to run.

This article hopes to correct any such lingering impression by demonstrating that OpenSRF itself is
an extremely simple architecture on which one can easily build applications of many kinds – not just
library applications – and that you can use a number of different languages to call and implement
OpenSRF methods with a minimal learning curve. With an application built on OpenSRF, when you
identify a bottleneck in your application’s business logic layer, you can adjust the number of the
processes serving that particular bottleneck on each of your servers; or if the problem is that your
service is resource-hungry, you could add an inexpensive server to your cluster and dedicate it to
running that resource-hungry service.

Programming language support
If you need to develop an entirely new OpenSRF service, you can choose from a number of
different languages in which to implement that service. OpenSRF client language bindings have
been written for C, Java, JavaScript, Perl, and Python, and server language bindings have been

Chapter 8. Easing gently into OpenSRF 46

http://www.georgialibraries.org/statelibrarian/bythenumbers.pdf
http://evergreen-ils.org/blog/?p=21
http://evergreen-ils.org/blog/?p=56
http://evergreen-ils.org/blog/?p=56

written for C, Perl, and Python. This article uses Perl examples as a lowest common denominator
programming language. Writing an OpenSRF binding for another language is a relatively small task
if that language offers libraries that support the core technologies on which OpenSRF depends:

• Extensible Messaging and Presence Protocol (XMPP, sometimes referred to as Jabber) - provides
the base messaging infrastructure between OpenSRF clients and servers

• JavaScript Object Notation (JSON) - serializes the content of each XMPP message in a standardized
and concise format

• memcached - provides the caching service

• syslog - the standard UNIX logging service

Unfortunately, the OpenSRF reference documentation, although augmented by the OpenSRF
glossary, blog posts like the description of OpenSRF and Jabber, and even this article, is not a
sufficient substitute for a complete specification on which one could implement a language binding.
The recommended option for would-be developers of another language binding is to use the Python
implementation as the cleanest basis for a port to another language.

OpenSRF communication flows over XMPP
The XMPP messaging service underpins OpenSRF, requiring an XMPP server such as ejabberd.
When you start OpenSRF, the first XMPP clients that connect to the XMPP server are the OpenSRF
public and private routers. OpenSRF routers maintain a list of available services and connect clients
to available services. When an OpenSRF service starts, it establishes a connection to the XMPP
server and registers itself with the private router. The OpenSRF configuration contains a list of
public OpenSRF services, each of which must also register with the public router. Services and
clients connect to the XMPP server using a single set of XMPP client credentials (for example,
opensrf@private.localhost), but use XMPP resource identifiers to differentiate themselves in
the Jabber ID (JID) for each connection. For example, the JID for a copy of the opensrf.simple-
text service with process ID 6285 that has connected to the private.localhost domain using
the opensrf XMPP client credentials could be opensrf@private.localhost/opensrf.simple-
text_drone_at_localhost_6285.

OpenSRF communication flows over HTTP
Any OpenSRF service registered with the public router is accessible via the OpenSRF
HTTP Translator. The OpenSRF HTTP Translator implements the OpenSRF-over-HTTP proposed
specification as an Apache module that translates HTTP requests into OpenSRF requests and
returns OpenSRF results as HTTP results to the initiating HTTP client.

Issuing an HTTP POST request to an OpenSRF method via the OpenSRF HTTP Translator.
curl request broken up over multiple lines for legibility
curl -H "X-OpenSRF-service: opensrf.simple-text" \ #
 --data 'osrf-msg=[\ #
 {"__c":"osrfMessage","__p":{"threadTrace":0,"locale":"en-CA", \ #
 "type":"REQUEST","payload": {"__c":"osrfMethod","__p": \
 {"method":"opensrf.simple-text.reverse","params":["foobar"]} \
 }} \

Chapter 8. Easing gently into OpenSRF 47
Report errors in this documentation using Launchpad.

http://tools.ietf.org/html/rfc3920
http://json.org
http://memcached.org
http://tools.ietf.org/html/rfc5424
http://evergreen-ils.org/dokuwiki/doku.php?id=osrf-devel:primer
http://evergreen-ils.org/dokuwiki/doku.php?id=osrf-devel:primer
http://evergreen-ils.org/dokuwiki/doku.php?id=osrf-devel:primer
http://evergreen-ils.org/blog/?p=36
http://www.ejabberd.im/
http://www.open-ils.org/dokuwiki/doku.php?id=opensrf_over_http
http://www.open-ils.org/dokuwiki/doku.php?id=opensrf_over_http
https://bugs.launchpad.net/evergreen/+filebug

 }]' \
http://localhost/osrf-http-translator \ #

The X-OpenSRF-service header identifies the OpenSRF service of interest.
The POST request consists of a single parameter, the osrf-msg value, which contains a JSON
array.
The first object is an OpenSRF message ("__c":"osrfMessage") with a set of parameters
("__p":{}) containing:

• the identifier for the request ("threadTrace":0); this value is echoed back in the result

• the message type ("type":"REQUEST")

• the locale for the message; if the OpenSRF method is locale-sensitive, it can check the locale
for each OpenSRF request and return different information depending on the locale

• the payload of the message ("payload":{}) containing the OpenSRF method request
("__c":"osrfMethod") and its parameters ("__p:"{}), which in turn contains:

• the method name for the request ("method":"opensrf.simple-text.reverse")

• a set of JSON parameters to pass to the method ("params":["foobar"]); in this case, a
single string "foobar"

The URL on which the OpenSRF HTTP translator is listening, /osrf-http-translator is the
default location in the Apache example configuration files shipped with the OpenSRF source,
but this is configurable.

Results from an HTTP POST request to an OpenSRF method via the OpenSRF HTTP Translator.
HTTP response broken up over multiple lines for legibility
[{"__c":"osrfMessage","__p": \ #
 {"threadTrace":0, "payload": \ #
 {"__c":"osrfResult","__p": \ #
 {"status":"OK","content":"raboof","statusCode":200} \ #
 },"type":"RESULT","locale":"en-CA" \ #
 }
},
{"__c":"osrfMessage","__p": \ #
 {"threadTrace":0,"payload": \ #
 {"__c":"osrfConnectStatus","__p": \ #
 {"status":"Request Complete","statusCode":205} \ #
 },"type":"STATUS","locale":"en-CA" \ #
 }
}]

The OpenSRF HTTP Translator returns an array of JSON objects in its response. Each object in
the response is an OpenSRF message ("__c":"osrfMessage") with a collection of response
parameters ("__p":).
The OpenSRF message identifier ("threadTrace":0) confirms that this message is in response
to the request matching the same identifier.
The message includes a payload JSON object ("payload":) with an OpenSRF result for the
request ("__c":"osrfResult").
The result includes a status indicator string ("status":"OK"), the content of the result
response - in this case, a single string "raboof" ("content":"raboof") - and an integer status
code for the request ("statusCode":200).

Chapter 8. Easing gently into OpenSRF 48
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

The message also includes the message type ("type":"RESULT") and the message locale
("locale":"en-CA").
The second message in the set of results from the response.
Again, the message identifier confirms that this message is in response to a particular request.
The payload of the message denotes that this message is an OpenSRF connection status
message ("__c":"osrfConnectStatus"), with some information about the particular OpenSRF
connection that was used for this request.
The response parameters for an OpenSRF connection status message include a verbose
status ("status":"Request Complete") and an integer status code for the connection status
(`"statusCode":205).
The message also includes the message type ("type":"RESULT") and the message locale
("locale":"en-CA").

Before adding a new public OpenSRF service, ensure that it does not introduce privilege
escalation or unchecked access to data. For example, the Evergreen open-ils.cstore private
service is an object-relational mapper that provides read and write access to the entire Evergreen
database, so it would be catastrophic to expose that service publicly. In comparison, the
Evergreen open-ils.pcrud public service offers the same functionality as open-ils.cstore to
any connected HTTP client or OpenSRF client, but the additional authentication and authorization
layer in open-ils.pcrud prevents unchecked access to Evergreen’s data.

Stateless and stateful connections

OpenSRF supports both stateless and stateful connections. When an OpenSRF client issues a
REQUEST message in a stateless connection, the router forwards the request to the next available
service and the service returns the result directly to the client.

Chapter 8. Easing gently into OpenSRF 49
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

REQUEST flow in a stateless

connection.

When an OpenSRF client issues a CONNECT message to create a stateful connection, the router
returns the Jabber ID of the next available service to the client so that the client can issue one or
more REQUEST message directly to that particular service and the service will return corresponding
RESULT messages directly to the client. Until the client issues a DISCONNECT message, that particular
service is only available to the requesting client. Stateful connections are useful for clients that
need to make many requests from a particular service, as it avoids the intermediary step of
contacting the router for each request, as well as for operations that require a controlled sequence
of commands, such as a set of database INSERT, UPDATE, and DELETE statements within a
transaction.

Chapter 8. Easing gently into OpenSRF 50
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

CONNECT, REQUEST, and DISCONNECT flow in a stateful

connection.

Enough jibber-jabber: writing an OpenSRF
service
Imagine an application architecture in which 10 lines of Perl or Python, using the data types native
to each language, are enough to implement a method that can then be deployed and invoked
seamlessly across hundreds of servers. You have just imagined developing with OpenSRF – it is truly
that simple. Under the covers, of course, the OpenSRF language bindings do an incredible amount of
work on behalf of the developer. An OpenSRF application consists of one or more OpenSRF services
that expose methods: for example, the opensrf.simple-text demonstration service exposes the
opensrf.simple-text.split() and opensrf.simple-text.reverse() methods. Each method
accepts zero or more arguments and returns zero or one results. The data types supported by
OpenSRF arguments and results are typical core language data types: strings, numbers, booleans,
arrays, and hashes.

To implement a new OpenSRF service, perform the following steps:

1. Include the base OpenSRF support libraries

2. Write the code for each of your OpenSRF methods as separate procedures

3. Register each method

4. Add the service definition to the OpenSRF configuration files

Chapter 8. Easing gently into OpenSRF 51
Report errors in this documentation using Launchpad.

http://git.evergreen-ils.org/?p=OpenSRF.git;a=blob_plain;f=src/perl/lib/OpenSRF/Application/Demo/SimpleText.pm
https://bugs.launchpad.net/evergreen/+filebug

For example, the following code implements an OpenSRF service. The service includes one
method named opensrf.simple-text.reverse() that accepts one string as input and returns the
reversed version of that string:
#!/usr/bin/perl

package OpenSRF::Application::Demo::SimpleText;

use strict;

use OpenSRF::Application;
use parent qw/OpenSRF::Application/;

sub text_reverse {
 my ($self , $conn, $text) = @_;
 my $reversed_text = scalar reverse($text);
 return $reversed_text;
}

__PACKAGE__->register_method(
 method => 'text_reverse',
 api_name => 'opensrf.simple-text.reverse'
);

Ten lines of code, and we have a complete OpenSRF service that exposes a single method
and could be deployed quickly on a cluster of servers to meet your application’s ravenous
demand for reversed strings! If you’re unfamiliar with Perl, the use OpenSRF::Application;
use parent qw/OpenSRF::Application/; lines tell this package to inherit methods and
properties from the OpenSRF::Application module. For example, the call to __PACKAGE__-
>register_method() is defined in OpenSRF::Application but due to inheritance is available in
this package (named by the special Perl symbol __PACKAGE__ that contains the current package
name). The register_method() procedure is how we introduce a method to the rest of the
OpenSRF world.

Registering a service with the OpenSRF configuration files
Two files control most of the configuration for OpenSRF:

• opensrf.xml contains the configuration for the service itself as well as a list of which application
servers in your OpenSRF cluster should start the service

• opensrf_core.xml (often referred to as the "bootstrap configuration" file) contains the OpenSRF
networking information, including the XMPP server connection credentials for the public and
private routers; you only need to touch this for a new service if the new service needs to be
accessible via the public router

Begin by defining the service itself in opensrf.xml. To register the opensrf.simple-text service,
add the following section to the <apps> element (corresponding to the XPath /opensrf/default/
apps/):
<apps>
 <opensrf.simple-text> <!-- -->
 <keepalive>3</keepalive> <!-- -->
 <stateless>1</stateless> <!-- -->
 <language>perl</language> <!-- -->
 <implementation>OpenSRF::Application::Demo::SimpleText</implementation> <!-- -->
 <max_requests>100</max_requests> <!-- -->

Chapter 8. Easing gently into OpenSRF 52
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

 <unix_config>
 <max_requests>1000</max_requests> <!-- -->
 <unix_log>opensrf.simple-text_unix.log</unix_log> <!-- -->
 <unix_sock>opensrf.simple-text_unix.sock</unix_sock> <!-- -->
 <unix_pid>opensrf.simple-text_unix.pid</unix_pid> <!-- -->
 <min_children>5</min_children> <!-- -->
 <max_children>15</max_children> <!-- -->
 <min_spare_children>2</min_spare_children> <!-- -->
 <max_spare_children>5</max_spare_children> <!-- -->
 </unix_config>
 </opensrf.simple-text>

 <!-- other OpenSRF services registered here... -->
</apps>

The element name is the name that the OpenSRF control scripts use to refer to the service.
Specifies the interval (in seconds) between checks to determine if the service is still running.
Specifies whether OpenSRF clients can call methods from this service without first having to
create a connection to a specific service backend process for that service. If the value is 1, then
the client can simply issue a request and the router will forward the request to an available
service and the result will be returned directly to the client.
Specifies the programming language in which the service is implemented
Specifies the name of the library or module in which the service is implemented
(C implementations): Specifies the maximum number of requests a process serves before it
is killed and replaced by a new process.
(Perl implementations): Specifies the maximum number of requests a process serves before
it is killed and replaced by a new process.
The name of the log file for language-specific log messages such as syntax warnings.
The name of the UNIX socket used for inter-process communications.
The name of the PID file for the master process for the service.
The minimum number of child processes that should be running at any given time.
The maximum number of child processes that should be running at any given time.
The minimum number of child processes that should be available to handle incoming requests.
If there are fewer than this number of spare child processes, new processes will be spawned.
The maximum number of child processes that should be available to handle incoming requests.
If there are more than this number of spare child processes, the extra processes will be killed.

To make the service accessible via the public router, you must also edit the opensrf_core.xml
configuration file to add the service to the list of publicly accessible services:

Making a service publicly accessible in opensrf_core.xml.
<router> <!-- -->
 <!-- This is the public router. On this router, we only register applications
 which should be accessible to everyone on the opensrf network -->
 <name>router</name>
 <domain>public.localhost</domain> <!-- -->
 <services>
 <service>opensrf.math</service>
 <service>opensrf.simple-text</service> <!-- -->
 </services>
</router>

This section of the opensrf_core.xml file is located at XPath /config/opensrf/routers/.
public.localhost is the canonical public router domain in the OpenSRF installation
instructions.

Chapter 8. Easing gently into OpenSRF 53
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

Each <service> element contained in the <services> element offers their services via the
public router as well as the private router.

Once you have defined the new service, you must restart the OpenSRF Router to retrieve the new
configuration and start or restart the service itself.

Calling an OpenSRF method
OpenSRF clients in any supported language can invoke OpenSRF services in any supported
language. So let’s see a few examples of how we can call our fancy new opensrf.simple-
text.reverse() method:

Calling OpenSRF methods from the srfsh client

srfsh is a command-line tool installed with OpenSRF that you can use to call OpenSRF methods. To
call an OpenSRF method, issue the request command and pass the OpenSRF service and method
name as the first two arguments; then pass a list of JSON objects as the arguments to the method
being invoked.

The following example calls the opensrf.simple-text.reverse method of the opensrf.simple-
text OpenSRF service, passing the string "foobar" as the only method argument:
$ srfsh
srfsh # request opensrf.simple-text opensrf.simple-text.reverse "foobar"

Received Data: "raboof"

=------------------------------------
Request Completed Successfully
Request Time in seconds: 0.016718
=------------------------------------

Getting documentation for OpenSRF methods from the srfsh client

The srfsh client also gives you command-line access to retrieving metadata about OpenSRF
services and methods. For a given OpenSRF method, for example, you can retrieve information
such as the minimum number of required arguments, the data type and a description of each
argument, the package or library in which the method is implemented, and a description of the
method. To retrieve the documentation for an opensrf method from srfsh, issue the introspect
command, followed by the name of the OpenSRF service and (optionally) the name of the OpenSRF
method. If you do not pass a method name to the introspect command, srfsh lists all of the
methods offered by the service. If you pass a partial method name, srfsh lists all of the methods
that match that portion of the method name.

The quality and availability of the descriptive information for each method depends on the
developer to register the method with complete and accurate information. The quality varies
across the set of OpenSRF and Evergreen APIs, although some effort is being put towards
improving the state of the internal documentation.

srfsh# introspect opensrf.simple-text "opensrf.simple-text.reverse"

Chapter 8. Easing gently into OpenSRF 54
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

--> opensrf.simple-text

Received Data: {
 "__c":"opensrf.simple-text",
 "__p":{
 "api_level":1,
 "stream":0, \ #
 "object_hint":"OpenSRF_Application_Demo_SimpleText",
 "remote":0,
 "package":"OpenSRF::Application::Demo::SimpleText", \ #
 "api_name":"opensrf.simple-text.reverse", \ #
 "server_class":"opensrf.simple-text",
 "signature":{ \ #
 "params":[\ #
 {
 "desc":"The string to reverse",
 "name":"text",
 "type":"string"
 }
],
 "desc":"Returns the input string in reverse order\n", \ #
 "return":{ \ #
 "desc":"Returns the input string in reverse order",
 "type":"string"
 }
 },
 "method":"text_reverse", \ #
 "argc":1 \ #
 }
}

stream denotes whether the method supports streaming responses or not.
package identifies which package or library implements the method.
api_name identifies the name of the OpenSRF method.
signature is a hash that describes the parameters for the method.
params is an array of hashes describing each parameter in the method; each parameter has
a description (desc), name (name), and type (type).
desc is a string that describes the method itself.
return is a hash that describes the return value for the method; it contains a description of
the return value (desc) and the type of the returned value (type).
method identifies the name of the function or method in the source implementation.
argc is an integer describing the minimum number of arguments that must be passed to this
method.

Calling OpenSRF methods from Perl applications

To call an OpenSRF method from Perl, you must connect to the OpenSRF service, issue the request
to the method, and then retrieve the results.
#/usr/bin/perl
use strict;
use OpenSRF::AppSession;
use OpenSRF::System;

OpenSRF::System->bootstrap_client(config_file => '/openils/conf/opensrf_core.xml'); #

my $session = OpenSRF::AppSession->create("opensrf.simple-text"); #

print "substring: Accepts a string and a number as input, returns a string\n";
my $result = $session->request("opensrf.simple-text.substring", "foobar", 3); #

Chapter 8. Easing gently into OpenSRF 55
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

my $request = $result->gather(); #
print "Substring: $request\n\n";

print "split: Accepts two strings as input, returns an array of strings\n";
$request = $session->request("opensrf.simple-text.split", "This is a test", " "); #
my $output = "Split: [";
my $element;
while ($element = $request->recv()) { #
 $output .= $element->content . ", "; #
}
$output =~ s/, $/]/;
print $output . "\n\n";

print "statistics: Accepts an array of strings as input, returns a hash\n";
my @many_strings = [
 "First I think I'll have breakfast",
 "Then I think that lunch would be nice",
 "And then seventy desserts to finish off the day"
];

$result = $session->request("opensrf.simple-text.statistics", @many_strings); #
$request = $result->gather(); #
print "Length: " . $result->{'length'} . "\n";
print "Word count: " . $result->{'word_count'} . "\n";

$session->disconnect(); #

The OpenSRF::System->bootstrap_client() method reads the OpenSRF configuration
information from the indicated file and creates an XMPP client connection based on that
information.
The OpenSRF::AppSession->create() method accepts one argument - the name of the
OpenSRF service to which you want to want to make one or more requests - and returns an
object prepared to use the client connection to make those requests.
The OpenSRF::AppSession->request() method accepts a minimum of one argument - the
name of the OpenSRF method to which you want to make a request - followed by zero or more
arguments to pass to the OpenSRF method as input values. This example passes a string and
an integer to the opensrf.simple-text.substring method defined by the opensrf.simple-
text OpenSRF service.
The gather() method, called on the result object returned by the request() method, iterates
over all of the possible results from the result object and returns a single variable.
This request() call passes two strings to the opensrf.simple-text.split method defined
by the opensrf.simple-text OpenSRF service and returns (via gather()) a reference to an
array of results.
The opensrf.simple-text.split() method is a streaming method that returns an array of
results with one element per recv() call on the result object. We could use the gather()
method to retrieve all of the results in a single array reference, but instead we simply iterate
over the result variable until there are no more results to retrieve.
While the gather() convenience method returns only the content of the complete set of
results for a given request, the recv() method returns an OpenSRF result object with status,
statusCode, and content fields as we saw in the HTTP results example.
This request() call passes an array to the opensrf.simple-text.statistics method
defined by the opensrf.simple-text OpenSRF service.
The result object returns a hash reference via gather(). The hash contains the length and
word_count keys we defined in the method.
The OpenSRF::AppSession->disconnect() method closes the XMPP client connection and
cleans up resources associated with the session.

Chapter 8. Easing gently into OpenSRF 56
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

Accepting and returning more interesting data types
Of course, the example of accepting a single string and returning a single string is not very
interesting. In real life, our applications tend to pass around multiple arguments, including arrays
and hashes. Fortunately, OpenSRF makes that easy to deal with; in Perl, for example, returning a
reference to the data type does the right thing. In the following example of a method that returns
a list, we accept two arguments of type string: the string to be split, and the delimiter that should
be used to split the string.

Text splitting method - streaming mode.
sub text_split {
 my $self = shift;
 my $conn = shift;
 my $text = shift;
 my $delimiter = shift || ' ';

 my @split_text = split $delimiter, $text;
 return \@split_text;
}

__PACKAGE__->register_method(
 method => 'text_split',
 api_name => 'opensrf.simple-text.split'
);

We simply return a reference to the list, and OpenSRF does the rest of the work for us to convert the
data into the language-independent format that is then returned to the caller. As a caller of a given
method, you must rely on the documentation used to register to determine the data structures -
if the developer has added the appropriate documentation.

Accepting and returning Evergreen objects
OpenSRF is agnostic about objects; its role is to pass JSON back and forth between OpenSRF clients
and services, and it allows the specific clients and services to define their own semantics for the
JSON structures. On top of that infrastructure, Evergreen offers the fieldmapper: an object-relational
mapper that provides a complete definition of all objects, their properties, their relationships to
other objects, the permissions required to create, read, update, or delete objects of that type, and
the database table or view on which they are based.

The Evergreen fieldmapper offers a great deal of convenience for working with complex system
objects beyond the basic mapping of classes to database schemas. Although the result is passed
over the wire as a JSON object containing the indicated fields, fieldmapper-aware clients then turn
those JSON objects into native objects with setter / getter methods for each field.

All of this metadata about Evergreen objects is defined in the fieldmapper configuration file (/
openils/conf/fm_IDL.xml), and access to these classes is provided by the open-ils.cstore,
open-ils.pcrud, and open-ils.reporter-store OpenSRF services which parse the fieldmapper
configuration file and dynamically register OpenSRF methods for creating, reading, updating, and
deleting all of the defined classes.

Example fieldmapper class definition for "Open User Summary".
<class id="mous" controller="open-ils.cstore open-ils.pcrud"
 oils_obj:fieldmapper="money::open_user_summary"
 oils_persist:tablename="money.open_usr_summary"

Chapter 8. Easing gently into OpenSRF 57
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

 reporter:label="Open User Summary"> <!-- -->
 <fields oils_persist:primary="usr" oils_persist:sequence=""> <!-- -->
 <field name="balance_owed" reporter:datatype="money" /> <!-- -->
 <field name="total_owed" reporter:datatype="money" />
 <field name="total_paid" reporter:datatype="money" />
 <field name="usr" reporter:datatype="link"/>
 </fields>
 <links>
 <link field="usr" reltype="has_a" key="id" map="" class="au"/> <!-- -->
 </links>
 <permacrud xmlns="http://open-ils.org/spec/opensrf/IDL/permacrud/v1"> <!-- -->
 <actions>
 <retrieve permission="VIEW_USER"> <!-- -->
 <context link="usr" field="home_ou"/> <!-- -->
 </retrieve>
 </actions>
 </permacrud>
</class>

The <class> element defines the class:

• The id attribute defines the class hint that identifies the class both elsewhere in the
fieldmapper configuration file, such as in the value of the field attribute of the <link>
element, and in the JSON object itself when it is instantiated. For example, an "Open User
Summary" JSON object would have the top level property of "__c":"mous".

• The controller attribute identifies the services that have direct access to this class. If open-
ils.pcrud is not listed, for example, then there is no means to directly access members of
this class through a public service.

• The oils_obj:fieldmapper attribute defines the name of the Perl fieldmapper class that will
be dynamically generated to provide setter and getter methods for instances of the class.

• The oils_persist:tablename attribute identifies the schema name and table name of the
database table that stores the data that represents the instances of this class. In this case,
the schema is money and the table is open_usr_summary.

• The reporter:label attribute defines a human-readable name for the class used in
the reporting interface to identify the class. These names are defined in English in the
fieldmapper configuration file; however, they are extracted so that they can be translated
and served in the user’s language of choice.

The <fields> element lists all of the fields that belong to the object.

• The oils_persist:primary attribute identifies the field that acts as the primary key for the
object; in this case, the field with the name usr.

• The oils_persist:sequence attribute identifies the sequence object (if any) in this
database provides values for new instances of this class. In this case, the primary key is
defined by a field that is linked to a different table, so no sequence is used to populate these
instances.

Each <field> element defines a single field with the following attributes:

• The name attribute identifies the column name of the field in the underlying database table
as well as providing a name for the setter / getter method that can be invoked in the JSON
or native version of the object.

Chapter 8. Easing gently into OpenSRF 58
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

• The reporter:datatype attribute defines how the reporter should treat the contents of the
field for the purposes of querying and display.

• The reporter:label attribute can be used to provide a human-readable name for each field;
without it, the reporter falls back to the value of the name attribute.

The <links> element contains a set of zero or more <link> elements, each of which defines
a relationship between the class being described and another class.

• The field attribute identifies the field named in this class that links to the external class.

• The reltype attribute identifies the kind of relationship between the classes; in the case
of has_a, each value in the usr field is guaranteed to have a corresponding value in the
external class.

• The key attribute identifies the name of the field in the external class to which this field links.

• The rarely-used map attribute identifies a second class to which the external class links;
it enables this field to define a direct relationship to an external class with one degree of
separation, to avoid having to retrieve all of the linked members of an intermediate class
just to retrieve the instances from the actual desired target class.

• The class attribute identifies the external class to which this field links.
The <permacrud> element defines the permissions that must have been granted to a user to
operate on instances of this class.
The <retrieve> element is one of four possible children of the <actions> element that define
the permissions required for each action: create, retrieve, update, and delete.

• The permission attribute identifies the name of the permission that must have been granted
to the user to perform the action.

• The contextfield attribute, if it exists, defines the field in this class that identifies the library
within the system for which the user must have privileges to work. If a user has been granted
a given permission, but has not been granted privileges to work at a given library, they can
not perform the action at that library.

The rarely-used <context> element identifies a linked field (link attribute) in this class which
links to an external class that holds the field (field attribute) that identifies the library within
the system for which the user must have privileges to work.

When you retrieve an instance of a class, you can ask for the result to flesh some or all of the linked
fields of that class, so that the linked instances are returned embedded directly in your requested
instance. In that same request you can ask for the fleshed instances to in turn have their linked
fields fleshed. By bundling all of this into a single request and result sequence, you can avoid the
network overhead of requiring the client to request the base object, then request each linked object
in turn.

You can also iterate over a collection of instances and set the automatically generated isdeleted,
isupdated, or isnew properties to indicate that the given instance has been deleted, updated,
or created respectively. Evergreen can then act in batch mode over the collection to perform the
requested actions on any of the instances that have been flagged for action.

Chapter 8. Easing gently into OpenSRF 59
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

Returning streaming results
In the previous implementation of the opensrf.simple-text.split method, we returned a
reference to the complete array of results. For small values being delivered over the network, this
is perfectly acceptable, but for large sets of values this can pose a number of problems for the
requesting client. Consider a service that returns a set of bibliographic records in response to a
query like "all records edited in the past month"; if the underlying database is relatively active, that
could result in thousands of records being returned as a single network request. The client would
be forced to block until all of the results are returned, likely resulting in a significant delay, and
depending on the implementation, correspondingly large amounts of memory might be consumed
as all of the results are read from the network in a single block.

OpenSRF offers a solution to this problem. If the method returns results that can be divided into
separate meaningful units, you can register the OpenSRF method as a streaming method and
enable the client to loop over the results one unit at a time until the method returns no further
results. In addition to registering the method with the provided name, OpenSRF also registers an
additional method with .atomic appended to the method name. The .atomic variant gathers all
of the results into a single block to return to the client, giving the caller the ability to choose either
streaming or atomic results from a single method definition.

In the following example, the text splitting method has been reimplemented to support streaming;
very few changes are required:

Text splitting method - streaming mode.
sub text_split {
 my $self = shift;
 my $conn = shift;
 my $text = shift;
 my $delimiter = shift || ' ';

 my @split_text = split $delimiter, $text;
 foreach my $string (@split_text) { #
 $conn->respond($string);
 }
 return undef;
}

__PACKAGE__->register_method(
 method => 'text_split',
 api_name => 'opensrf.simple-text.split',
 stream => 1 #
);

Rather than returning a reference to the array, a streaming method loops over the contents
of the array and invokes the respond() method of the connection object on each element of
the array.
Registering the method as a streaming method instructs OpenSRF to also register an atomic
variant (opensrf.simple-text.split.atomic).

Error! Warning! Info! Debug!
As hard as it may be to believe, it is true: applications sometimes do not behave in the expected
manner, particularly when they are still under development. The server language bindings for

Chapter 8. Easing gently into OpenSRF 60
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

OpenSRF include integrated support for logging messages at the levels of ERROR, WARNING,
INFO, DEBUG, and the extremely verbose INTERNAL to either a local file or to a syslogger
service. The destination of the log files, and the level of verbosity to be logged, is set in the
opensrf_core.xml configuration file. To add logging to our Perl example, we just have to add the
OpenSRF::Utils::Logger package to our list of used Perl modules, then invoke the logger at the
desired logging level.

You can include many calls to the OpenSRF logger; only those that are higher than your configured
logging level will actually hit the log. The following example exercises all of the available logging
levels in OpenSRF:
use OpenSRF::Utils::Logger;
my $logger = OpenSRF::Utils::Logger;
some code in some function
{
 $logger->error("Hmm, something bad DEFINITELY happened!");
 $logger->warn("Hmm, something bad might have happened.");
 $logger->info("Something happened.");
 $logger->debug("Something happened; here are some more details.");
 $logger->internal("Something happened; here are all the gory details.")
}

If you call the mythical OpenSRF method containing the preceding OpenSRF logger statements on
a system running at the default logging level of INFO, you will only see the INFO, WARN, and ERR
messages, as follows:

Results of logging calls at the default level of INFO.
[2010-03-17 22:27:30] opensrf.simple-text [ERR :5681:SimpleText.pm:277:] Hmm, something bad DEFINITELY happened!
[2010-03-17 22:27:30] opensrf.simple-text [WARN:5681:SimpleText.pm:278:] Hmm, something bad might have happened.
[2010-03-17 22:27:30] opensrf.simple-text [INFO:5681:SimpleText.pm:279:] Something happened.

If you then increase the the logging level to INTERNAL (5), the logs will contain much more
information, as follows:

Results of logging calls at the default level of INTERNAL.
[2010-03-17 22:48:11] opensrf.simple-text [ERR :5934:SimpleText.pm:277:] Hmm, something bad DEFINITELY happened!
[2010-03-17 22:48:11] opensrf.simple-text [WARN:5934:SimpleText.pm:278:] Hmm, something bad might have happened.
[2010-03-17 22:48:11] opensrf.simple-text [INFO:5934:SimpleText.pm:279:] Something happened.
[2010-03-17 22:48:11] opensrf.simple-text [DEBG:5934:SimpleText.pm:280:] Something happened; here are some more
 details.
[2010-03-17 22:48:11] opensrf.simple-text [INTL:5934:SimpleText.pm:281:] Something happened; here are all the
 gory details.
[2010-03-17 22:48:11] opensrf.simple-text [ERR :5934:SimpleText.pm:283:] Resolver did not find a cache hit
[2010-03-17 22:48:21] opensrf.simple-text [INTL:5934:Cache.pm:125:] Stored opensrf.simple-text.test_cache.masaa
 => "here" in memcached server
[2010-03-17 22:48:21] opensrf.simple-text [DEBG:5934:Application.pm:579:] Coderef for
 [OpenSRF::Application::Demo::SimpleText::test_cache] has been run
[2010-03-17 22:48:21] opensrf.simple-text [DEBG:5934:Application.pm:586:] A top level Request object is
 responding de nada
[2010-03-17 22:48:21] opensrf.simple-text [DEBG:5934:Application.pm:190:] Method duration for [opensrf.simple-
text.test_cache]: 10.005
[2010-03-17 22:48:21] opensrf.simple-text [INTL:5934:AppSession.pm:780:] Calling queue_wait(0)
[2010-03-17 22:48:21] opensrf.simple-text [INTL:5934:AppSession.pm:769:] Resending...0
[2010-03-17 22:48:21] opensrf.simple-text [INTL:5934:AppSession.pm:450:] In send
[2010-03-17 22:48:21] opensrf.simple-text [DEBG:5934:AppSession.pm:506:] AppSession sending RESULT to
 opensrf@private.localhost/_dan-karmic-liblap_1268880489.752154_5943 with threadTrace [1]
[2010-03-17 22:48:21] opensrf.simple-text [DEBG:5934:AppSession.pm:506:] AppSession sending STATUS to
 opensrf@private.localhost/_dan-karmic-liblap_1268880489.752154_5943 with threadTrace [1]
...

Chapter 8. Easing gently into OpenSRF 61
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

To see everything that is happening in OpenSRF, try leaving your logging level set to INTERNAL for
a few minutes - just ensure that you have a lot of free disk space available if you have a moderately
busy system!

Caching results: one secret of scalability
If you have ever used an application that depends on a remote Web service outside of your control-
say, if you need to retrieve results from a microblogging service-you know the pain of latency and
dependability (or the lack thereof). To improve response time in OpenSRF applications, you can
take advantage of the support offered by the OpenSRF::Utils::Cache module for communicating
with a local instance or cluster of memcache daemons to store and retrieve persistent values.

use OpenSRF::Utils::Cache; #
sub test_cache {
 my $self = shift;
 my $conn = shift;
 my $test_key = shift;
 my $cache = OpenSRF::Utils::Cache->new('global'); #
 my $cache_key = "opensrf.simple-text.test_cache.$test_key"; #
 my $result = $cache->get_cache($cache_key) || undef; #
 if ($result) {
 $logger->info("Resolver found a cache hit");
 return $result;
 }
 sleep 10; #
 my $cache_timeout = 300; #
 $cache->put_cache($cache_key, "here", $cache_timeout); #
 return "There was no cache hit.";
}

This example:

Imports the OpenSRF::Utils::Cache module
Creates a cache object
Creates a unique cache key based on the OpenSRF method name and request input value
Checks to see if the cache key already exists; if so, it immediately returns that value
If the cache key does not exist, the code sleeps for 10 seconds to simulate a call to a slow
remote Web service, or an intensive process
Sets a value for the lifetime of the cache key in seconds
When the code has retrieved its value, then it can create the cache entry, with the cache key,
value to be stored ("here"), and the timeout value in seconds to ensure that we do not return
stale data on subsequent calls

Initializing the service and its children: child labour
When an OpenSRF service is started, it looks for a procedure called initialize() to set up any
global variables shared by all of the children of the service. The initialize() procedure is typically
used to retrieve configuration settings from the opensrf.xml file.

An OpenSRF service spawns one or more children to actually do the work requested by callers
of the service. For every child process an OpenSRF service spawns, the child process clones the
parent environment and then each child process runs the child_init() process (if any) defined
in the OpenSRF service to initialize any child-specific settings.

Chapter 8. Easing gently into OpenSRF 62
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

When the OpenSRF service kills a child process, it invokes the child_exit() procedure (if any) to
clean up any resources associated with the child process. Similarly, when the OpenSRF service is
stopped, it calls the DESTROY() procedure to clean up any remaining resources.

Retrieving configuration settings

The settings for OpenSRF services are maintained in the opensrf.xml XML configuration file. The
structure of the XML document consists of a root element <opensrf> containing two child elements:

• <default> contains an <apps> element describing all OpenSRF services running on this
system — see the section called “Registering a service with the OpenSRF configuration files”
--, as well as any other arbitrary XML descriptions required for global configuration purposes.
For example, Evergreen uses this section for email notification and inter-library patron privacy
settings.

• <hosts> contains one element per host that participates in this OpenSRF system. Each host
element must include an <activeapps> element that lists all of the services to start on this host
when the system starts up. Each host element can optionally override any of the default settings.

OpenSRF includes a service named opensrf.settings to provide distributed cached access to the
configuration settings with a simple API:

• opensrf.settings.default_config.get: accepts zero arguments and returns the complete set
of default settings as a JSON document

• opensrf.settings.host_config.get: accepts one argument (hostname) and returns the
complete set of settings, as customized for that hostname, as a JSON document

• opensrf.settings.xpath.get: accepts one argument (an XPath expression) and returns the
portion of the configuration file that matches the expression as a JSON document

For example, to determine whether an Evergreen system uses the opt-in support
for sharing patron information between libraries, you could either invoke the
opensrf.settings.default_config.get method and parse the JSON document to determine the
value, or invoke the opensrf.settings.xpath.get method with the XPath /opensrf/default/
share/user/opt_in argument to retrieve the value directly.

In practice, OpenSRF includes convenience libraries in all of its client language
bindings to simplify access to configuration values. C offers osrfConfig.c, Perl offers
OpenSRF::Utils::SettingsClient, Java offers org.opensrf.util.SettingsClient, and Python
offers osrf.set. These libraries locally cache the configuration file to avoid network roundtrips
for every request and enable the developer to request specific values without having to manually
construct XPath expressions.

Getting under the covers with OpenSRF
Now that you have seen that it truly is easy to create an OpenSRF service, we can take a look at
what is going on under the covers to make all of this work for you.

Chapter 8. Easing gently into OpenSRF 63
Report errors in this documentation using Launchpad.

http://www.w3.org/TR/xpath/
https://bugs.launchpad.net/evergreen/+filebug

Get on the messaging bus - safely
One of the core innovations of OpenSRF was to use the Extensible Messaging and Presence Protocol
(XMPP, more colloquially known as Jabber) as the messaging bus that ties OpenSRF services
together across servers. XMPP is an "XML protocol for near-real-time messaging, presence, and
request-response services" (http://www.ietf.org/rfc/rfc3920.txt) that OpenSRF relies on to handle
most of the complexity of networked communications. OpenSRF achieves a measure of security for
its services through the use of public and private XMPP domains; all OpenSRF services automatically
register themselves with the private XMPP domain, but only those services that register themselves
with the public XMPP domain can be invoked from public OpenSRF clients.

In a minimal OpenSRF deployment, two XMPP users named "router" connect to the XMPP server,
with one connected to the private XMPP domain and one connected to the public XMPP domain.
Similarly, two XMPP users named "opensrf" connect to the XMPP server via the private and public
XMPP domains. When an OpenSRF service is started, it uses the "opensrf" XMPP user to advertise
its availability with the corresponding router on that XMPP domain; the XMPP server automatically
assigns a Jabber ID (JID) based on the client hostname to each service’s listener process and each
connected drone process waiting to carry out requests. When an OpenSRF router receives a request
to invoke a method on a given service, it connects the requester to the next available listener in
the list of registered listeners for that service.

The opensrf and router user names, passwords, and domain names, along with the list of services
that should be public, are contained in the opensrf_core.xml configuration file.

Message body format
OpenSRF was an early adopter of JavaScript Object Notation (JSON). While XMPP is an XML protocol,
the Evergreen developers recognized that the compactness of the JSON format offered a significant
reduction in bandwidth for the volume of messages that would be generated in an application of
that size. In addition, the ability of languages such as JavaScript, Perl, and Python to generate native
objects with minimal parsing offered an attractive advantage over invoking an XML parser for every
message. Instead, the body of the XMPP message is a simple JSON structure. For a simple request,
like the following example that simply reverses a string, it looks like a significant overhead: but
we get the advantages of locale support and tracing the request from the requester through the
listener and responder (drone).

A request for opensrf.simple-text.reverse("foobar"):
<message from='router@private.localhost/opensrf.simple-text'
 to='opensrf@private.localhost/opensrf.simple-text_listener_at_localhost_6275'
 router_from='opensrf@private.localhost/_karmic_126678.3719_6288'
 router_to='' router_class='' router_command='' osrf_xid=''
>
 <thread>1266781414.366573.12667814146288</thread>
 <body>
[
 {"__c":"osrfMessage","__p":
 {"threadTrace":"1","locale":"en-US","type":"REQUEST","payload":
 {"__c":"osrfMethod","__p":
 {"method":"opensrf.simple-text.reverse","params":["foobar"]}
 }
 }
 }
]

Chapter 8. Easing gently into OpenSRF 64
Report errors in this documentation using Launchpad.

http://www.ietf.org/rfc/rfc3920.txt
https://bugs.launchpad.net/evergreen/+filebug

 </body>
</message>

A response from opensrf.simple-text.reverse("foobar").
<message from='opensrf@private.localhost/opensrf.simple-text_drone_at_localhost_6285'
 to='opensrf@private.localhost/_karmic_126678.3719_6288'
 router_command='' router_class='' osrf_xid=''
>
 <thread>1266781414.366573.12667814146288</thread>
 <body>
[
 {"__c":"osrfMessage","__p":
 {"threadTrace":"1","payload":
 {"__c":"osrfResult","__p":
 {"status":"OK","content":"raboof","statusCode":200}
 } ,"type":"RESULT","locale":"en-US"}
 },
 {"__c":"osrfMessage","__p":
 {"threadTrace":"1","payload":
 {"__c":"osrfConnectStatus","__p":
 {"status":"Request Complete","statusCode":205}
 },"type":"STATUS","locale":"en-US"}
 }
]
 </body>
</message>

The content of the <body> element of the OpenSRF request and result should look familiar; they
match the structure of the OpenSRF over HTTP examples that we previously dissected.

Registering OpenSRF methods in depth
Let’s explore the call to __PACKAGE__->register_method(); most of the elements of the hash are
optional, and for the sake of brevity we omitted them in the previous example. As we have seen in
the results of the introspection call, a verbose registration method call is recommended to better
enable the internal documentation. So, for the sake of completeness here, is the set of elements
that you should pass to __PACKAGE__->register_method():

• method: the name of the procedure in this module that is being registered as an OpenSRF method

• api_name: the invocable name of the OpenSRF method; by convention, the OpenSRF service
name is used as the prefix

• api_level: (optional) can be used for versioning the methods to allow the use of a deprecated
API, but in practical use is always 1

• argc: (optional) the minimal number of arguments that the method expects

• stream: (optional) if this argument is set to any value, then the method supports returning
multiple values from a single call to subsequent requests, and OpenSRF automatically creates
a corresponding method with ".atomic" appended to its name that returns the complete set of
results in a single request; streaming methods are useful if you are returning hundreds of records
and want to act on the results as they return

• signature: (optional) a hash describing the method’s purpose, arguments, and return value

• desc: a description of the method’s purpose

Chapter 8. Easing gently into OpenSRF 65
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

• params: an array of hashes, each of which describes one of the method arguments

• name: the name of the argument

• desc: a description of the argument’s purpose

• type: the data type of the argument: for example, string, integer, boolean, number, array,
or hash

• return: a hash describing the return value of the method

• desc: a description of the return value

• type: the data type of the return value: for example, string, integer, boolean, number, array,
or hash

Evergreen-specific OpenSRF services
Evergreen is currently the primary showcase for the use of OpenSRF as an application architecture.
Evergreen 2.6.0 includes the following set of OpenSRF services:

• open-ils.acq Supports tasks for managing the acquisitions process

• open-ils.actor: Supports common tasks for working with user accounts and libraries.

• open-ils.auth: Supports authentication of Evergreen users.

• open-ils.auth_proxy: Support using external services such as LDAP directories to authenticate
Evergreen users

• open-ils.cat: Supports common cataloging tasks, such as creating, modifying, and merging
bibliographic and authority records.

• open-ils.circ: Supports circulation tasks such as checking out items and calculating due dates.

• open-ils.collections: Supports tasks to assist collections services for contacting users with
outstanding fines above a certain threshold.

• open-ils.cstore: Supports unrestricted access to Evergreen fieldmapper objects. This is a
private service.

• open-ils.fielder

• open-ils.justintime: Support tasks for determining if an action/trigger event is still valid

• open-ils.pcrud: Supports access to Evergreen fieldmapper objects, restricted by staff user
permissions. This is a private service. objects.

• open-ils.permacrud: Supports access to Evergreen fieldmapper objects, restricted by staff user
permissions. This is a private service.

Chapter 8. Easing gently into OpenSRF 66
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

• open-ils.reporter: Supports the creation and scheduling of reports.

• open-ils.reporter-store: Supports access to Evergreen fieldmapper objects for the reporting
service. This is a private service.

• open-ils.resolver Support tasks for integrating with an OpenURL resolver.

• open-ils.search: Supports searching across bibliographic records, authority records, serial
records, Z39.50 sources, and ZIP codes.

• open-ils.serial: Support tasks for serials management

• open-ils.storage: A deprecated method of providing access to Evergreen fieldmapper objects.
Implemented in Perl, this service has largely been replaced by the much faster C-based open-
ils.cstore service.

• open-ils.supercat: Supports transforms of MARC records into other formats, such as MODS, as
well as providing Atom and RSS feeds and SRU access.

• open-ils.trigger: Supports event-based triggers for actions such as overdue and holds
available notification emails.

• open-ils.url_verify: Support tasks for validating URLs

• open-ils.vandelay: Supports the import and export of batches of bibliographic and authority
records.

• opensrf.settings: Supports communicating opensrf.xml settings to other services.

Of some interest is that the open-ils.reporter-store and open-ils.cstore services have
identical implementations. Surfacing them as separate services enables a deployer of Evergreen to
ensure that the reporting service does not interfere with the performance-critical open-ils.cstore
service. One can also direct the reporting service to a read-only database replica to, again, avoid
interference with open-ils.cstore which must write to the master database.

There are only a few significant services that are not built on OpenSRF, such as the SIP and Z39.50
servers. These services implement different protocols and build on existing daemon architectures
(Simple2ZOOM for Z39.50), but still rely on the other OpenSRF services to provide access to the
Evergreen data. The non-OpenSRF services are reasonably self-contained and can be deployed on
different servers to deliver the same sort of deployment flexibility as OpenSRF services, but have
the disadvantage of not being integrated into the same configuration and control infrastructure as
the OpenSRF services.

Evergreen after one year: reflections on
OpenSRF
Project Conifer has been live on Evergreen for just over a year now, and as one of the primary
technologists I have had to work closely with the OpenSRF infrastructure during that time. As such,
I am in a position to identify some of the strengths and weaknesses of OpenSRF based on our
experiences.

Chapter 8. Easing gently into OpenSRF 67
Report errors in this documentation using Launchpad.

http://projectconifer.ca
https://bugs.launchpad.net/evergreen/+filebug

Strengths of OpenSRF
As a service infrastructure, OpenSRF has been remarkably reliable. We initially deployed Evergreen
on an unreleased version of both OpenSRF and Evergreen due to our requirements for some
functionality that had not been delivered in a stable release at that point in time, and despite
this risky move we suffered very little unplanned downtime in the opening months. On July 27,
2009 we moved to a newer (but still unreleased) version of the OpenSRF and Evergreen code, and
began formally tracking our downtime. Since then, we have achieved more than 99.9% availability
- including scheduled downtime for maintenance. This compares quite favourably to the maximum
of 75% availability that we were capable of achieving on our previous library system due to the
nightly downtime that was required for our backup process. The OpenSRF "maximum request"
configuration parameter for each service that kills off drone processes after they have served a
given number of requests provides a nice failsafe for processes that might otherwise suffer from a
memory leak or hung process. It also helps that when we need to apply an update to a Perl service
that is running on multiple servers, we can apply the updated code, then restart the service on one
server at a time to avoid any downtime.

As promised by the OpenSRF infrastructure, we have also been able to tune our cluster of servers
to provide better performance. For example, we were able to change the number of maximum
concurrent processes for our database services when we noticed that we seeing a performance
bottleneck with database access. Making a configuration change go live simply requires you to
restart the opensrf.setting service to pick up the configuration change, then restart the affected
service on each of your servers. We were also able to turn off some of the less-used OpenSRF
services, such as open-ils.collections, on one of our servers to devote more resources on
that server to the more frequently used services and other performance-critical processes such
as Apache.

The support for logging and caching that is built into OpenSRF has been particularly helpful with the
development of a custom service for SFX holdings integration into our catalogue. Once I understood
how OpenSRF works, most of the effort required to build that SFX integration service was spent
on figuring out how to properly invoke the SFX API to display human-readable holdings. Adding a
new OpenSRF service and registering several new methods for the service was relatively easy. The
support for directing log messages to syslog in OpenSRF has also been a boon for both development
and debugging when problems arise in a cluster of five servers; we direct all of our log messages to
a single server where we can inspect the complete set of messages for the entire cluster in context,
rather than trying to piece them together across servers.

Weaknesses
The primary weakness of OpenSRF is the lack of either formal or informal documentation for
OpenSRF. There are many frequently asked questions on the Evergreen mailing lists and IRC
channel that indicate that some of the people running Evergreen or trying to run Evergreen have not
been able to find documentation to help them understand, even at a high level, how the OpenSRF
Router and services work with XMPP and the Apache Web server to provide a working Evergreen
system. Also, over the past few years several developers have indicated an interest in developing
Ruby and PHP bindings for OpenSRF, but the efforts so far have resulted in no working code.
Without a formal specification, clearly annotated examples, and unit tests for the major OpenSRF
communication use cases that could be ported to the new language as a base set of expectations
for a working binding, the hurdles for a developer new to OpenSRF are significant. As a result,

Chapter 8. Easing gently into OpenSRF 68
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

Evergreen integration efforts with popular frameworks like Drupal, Blacklight, and VuFind result
in the best practical option for a developer with limited time — database-level integration — which
has the unfortunate side effect of being much more likely to break after an upgrade.

In conjunction with the lack of documentation that makes it hard to get started with the framework,
a disincentive for new developers to contribute to OpenSRF itself is the lack of integrated unit
tests. For a developer to contribute a significant, non-obvious patch to OpenSRF, they need to
manually run through various (undocumented, again) use cases to try and ensure that the patch
introduced no unanticipated side effects. The same problems hold for Evergreen itself, although the
Constrictor stress-testing framework offers a way of performing some automated system testing
and performance testing.

These weaknesses could be relatively easily overcome with the effort through contributions from
people with the right skill sets. This article arguably offers a small set of clear examples at both
the networking and application layer of OpenSRF. A technical writer who understands OpenSRF
could contribute a formal specification to the project. With a formal specification at their disposal,
a quality assurance expert could create an automated test harness and a basic set of unit tests
that could be incrementally extended to provide more coverage over time. If one or more continual
integration environments are set up to track the various OpenSRF branches of interest, then
the OpenSRF community would have immediate feedback on build quality. Once a unit testing
framework is in place, more developers might be willing to develop and contribute patches as they
could sanity check their own code without an intense effort before exposing it to their peers.

Summary
In this article, I attempted to provide both a high-level and detailed overview of how OpenSRF
works, how to build and deploy new OpenSRF services, how to make requests to OpenSRF method
from OpenSRF clients or over HTTP, and why you should consider it a possible infrastructure for
building your next high-performance system that requires the capability to scale out. In addition, I
surveyed the Evergreen services built on OpenSRF and reflected on the strengths and weaknesses
of the platform based on the experiences of Project Conifer after a year in production, with some
thoughts about areas where the right application of skills could make a significant difference to
the Evergreen and OpenSRF projects.

Appendix: Python client
Following is a Python client that makes the same OpenSRF calls as the Perl client:
#!/usr/bin/env python
"""OpenSRF client example in Python"""
import osrf.system
import osrf.ses

def osrf_substring(session, text, sub):
 """substring: Accepts a string and a number as input, returns a string"""
 request = session.request('opensrf.simple-text.substring', text, sub)

 # Retrieve the response from the method
 # The timeout parameter is optional
 response = request.recv(timeout=2)

 request.cleanup()
 # The results are accessible via content()

Chapter 8. Easing gently into OpenSRF 69
Report errors in this documentation using Launchpad.

http://git.evergreen-ils.org/?p=working/random.git;a=shortlog;h=refs/heads/collab/berick/constrictor
https://bugs.launchpad.net/evergreen/+filebug

 return response.content()

def osrf_split(session, text, delim):
 """split: Accepts two strings as input, returns an array of strings"""
 request = session.request('opensrf.simple-text.split', text, delim)
 response = request.recv()
 request.cleanup()
 return response.content()

def osrf_statistics(session, strings):
 """statistics: Accepts an array of strings as input, returns a hash"""
 request = session.request('opensrf.simple-text.statistics', strings)
 response = request.recv()
 request.cleanup()
 return response.content()

if __name__ == "__main__":
 file = '/openils/conf/opensrf_core.xml'

 # Pull connection settings from <config><opensrf> section of opensrf_core.xml
 osrf.system.System.connect(config_file=file, config_context='config.opensrf')

 # Set up a connection to the opensrf.settings service
 session = osrf.ses.ClientSession('opensrf.simple-text')

 result = osrf_substring(session, "foobar", 3)
 print(result)
 print

 result = osrf_split(session, "This is a test", " ")
 print("Received %d elements: [" % len(result)),
 print(', '.join(result)), ']'

 many_strings = (
 "First I think I'll have breakfast",
 "Then I think that lunch would be nice",
 "And then seventy desserts to finish off the day"
)
 result = osrf_statistics(session, many_strings)
 print("Length: %d" % result["length"])
 print("Word count: %d" % result["word_count"])

 # Cleanup connection resources
 session.cleanup()

Python’s dnspython module refuses to read /etc/resolv.conf, so to access hostnames that
are not served up via DNS, such as the extremely common case of localhost, you may need to
install a package like dnsmasq to act as a local DNS server for those hostnames.

Chapter 8. Easing gently into OpenSRF 70
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

Chapter 9. Support Scripts
Various scripts are included with Evergreen in the /openils/bin/ directory (and in the source code
in Open-ILS/src/support-scripts and Open-ILS/src/extras). Some of them are used during
the installation process, such as eg_db_config, while others are usually run as cron jobs for routine
maintenance, such as fine_generator.pl and hold_targeter.pl. Others are useful for less
frequent needs, such as the scripts for importing/exporting MARC records. You may explore these
scripts and adapt them for your local needs. You are also welcome to share your improvements or
ask any questions on the Evergreen IRC channel or email lists.

Here is a summary of the most commonly used scripts. The script name links to more thorough
documentation, if available.

• action_trigger_runner.pl — Useful for creating events for specified hooks and running pending
events

• authority_authority_linker.pl — Links reference headings in authority records to main entry
headings in other authority records. Should be run at least once a day (only for changed records).

• authority_control_fields.pl — Links bibliographic records to the best matching authority record.
Should be run at least once a day (only for changed records). You can accomplish this by running
authority_control_fields.pl --days-back=1

• autogen.sh — Generates web files used by the OPAC, especially files related to organization unit
hierarchy, fieldmapper IDL, locales selection, facet definitions, compressed JS files and related
cache key

• clark-kent.pl — Used to start and stop the reporter (which runs scheduled reports)

• eg_db_config — Creates database and schema, updates config files, sets Evergreen
administrator username and password

• fine_generator.pl

• hold_targeter.pl

• marc2are.pl — Converts authority records from MARC format to Evergreen objects suitable for
importing via pg_loader.pl (or parallel_pg_loader.pl)

• marc2bre.pl — Converts bibliographic records from MARC format to Evergreen objects suitable
for importing via pg_loader.pl (or parallel_pg_loader.pl)

• marc2sre.pl — Converts serial records from MARC format to Evergreen objects suitable for
importing via pg_loader.pl (or parallel_pg_loader.pl)

• marc_export — Exports authority, bibliographic, and serial holdings records into any of these
formats: USMARC, UNIMARC, XML, BRE, ARE

• osrf_control — Used to start, stop and send signals to OpenSRF services

Chapter 9. Support Scripts 71

http://evergreen-ils.org/communicate/

• parallel_pg_loader.pl — Uses the output of marc2bre.pl (or similar tools) to generate the SQL for
importing records into Evergreen in a parallel fashion

authority_control_fields: Connecting
Bibliographic and Authority records

This script matches headings in bibliographic records to the appropriate authority records. When
it finds a match, it will add a subfield 0 to the matching bibliographic field.

Here is how the matching works:

Bibliographic field Authority field it
matches

Subfields that it examines

100 100 a,b,c,d,f,g,j,k,l,n,p,q,t,u
110 110 a,b,c,d,f,g,k,l,n,p,t,u
111 111 a,c,d,e,f,g,j,k,l,n,p,q,t,u
130 130 a,d,f,g,h,k,l,m,n,o,p,r,s,t
600 100 a,b,c,d,f,g,h,j,k,l,m,n,o,p,q,r,s,t,v,x,y,z
610 110 a,b,c,d,f,g,h,k,l,m,n,o,p,r,s,t,v,w,x,y,z
611 111 a,c,d,e,f,g,h,j,k,l,n,p,q,s,t,v,x,y,z
630 130 a,d,f,g,h,k,l,m,n,o,p,r,s,t,v,x,y,z
648 148 a,v,x,y,z
650 150 a,b,v,x,y,z
651 151 a,v,x,y,z
655 155 a,v,x,y,z
700 100 a,b,c,d,f,g,j,k,l,n,p,q,t,u
710 110 a,b,c,d,f,g,k,l,n,p,t,u
711 111 a,c,d,e,f,g,j,k,l,n,p,q,t,u
730 130 a,d,f,g,h,j,k,m,n,o,p,r,s,t
751 151 a,v,x,y,z
800 100 a,b,c,d,e,f,g,j,k,l,n,p,q,t,u,4
830 130 a,d,f,g,h,k,l,m,n,o,p,r,s,t

marc_export: Exporting Bibliographic Records
into MARC files

Chapter 9. Support Scripts 72
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

The following procedure explains how to export Evergreen bibliographic records into MARC files
using the marc_export support script. All steps should be performed by the opensrf user from your
Evergreen server.

Processing time for exporting records depends on several factors such as the number of records
you are exporting. It is recommended that you divide the export ID files (records.txt) into a
manageable number of records if you are exporting a large number of records.

1. Create a text file list of the Bibliographic record IDs you would like to export from Evergreen.
One way to do this is using SQL:
SELECT DISTINCT bre.id FROM biblio.record_entry AS bre
 JOIN asset.call_number AS acn ON acn.record = bre.id
 WHERE bre.deleted='false' and owning_lib=101 \g /home/opensrf/records.txt;

This query creates a file called records.txt containing a column of distinct IDs of items owned
by the organizational unit with the id 101.

2. Navigate to the support-scripts folder
cd /home/opensrf/Evergreen-ILS*/Open-ILS/src/support-scripts/

3. Run marc_export, using the ID file you created in step 1 to define which files to export. The
following example exports the records into MARCXML format.
cat /home/opensrf/records.txt | ./marc_export --store -i -c /openils/conf/opensrf_core.xml \
 -x /openils/conf/fm_IDL.xml -f XML --timeout 5 > exported_files.xml

marc_export does not output progress as it executes.

Options
The marc_export support script includes several options. You can find a complete list by running
./marc_export -h. A few key options are also listed below:

--descendants and --library

The marc_export script has two related options, --descendants and --library. Both options take
one argument of an organizational unit

The --library option will export records with holdings at the specified organizational unit only. By
default, this only includes physical holdings, not electronic ones (also known as located URIs).

The descendants option works much like the --library option except that it is aware of the
org. tree and will export records with holdings at the specified organizational unit and all of its
descendants. This is handy if you want to export the records for all of the branches of a system. You
can do that by specifying this option and the system’s shortname, instead of specifying multiple
--library options for each branch.

Chapter 9. Support Scripts 73
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

Both the --library and --descendants options can be repeated. All of the specified org. units
and their descendants will be included in the output. You can also combine --library and --
descendants options when necessary.

--items

The --items option will add an 852 field for every relevant item to the MARC record. This 852 field
includes the following information:

Subfield Contents
$b (occurrence 1) Call number owning library shortname
$b (occurrence 2) Item circulating library shortname
$c Shelving location
$g Circulation modifier
$j Call number
$k Call number prefix
$m Call number suffix
$p Barcode
$t Copy number
$x Miscellaneous item information
$y Price

--since

You can use the --since option to export records modified after a certain date and time.

--store

By default, marc_export will use the reporter storage service, which should work in most cases.
But if you have a separate reporter database and you know you want to talk directly to your main
production database, then you can set the --store option to cstore or storage.

--uris

The --uris option (short form: -u) allows you to export records with located URIs (i.e. electronic
resources). When used by itself, it will export only records that have located URIs. When used in
conjunction with --items, it will add records with located URIs but no items/copies to the output.
If combined with a --library or --descendants option, this option will limit its output to those
records with URIs at the designated libraries. The best way to use this option is in combination
with the --items and one of the --library or --descendants options to export all of a library’s
holdings both physical and electronic.

Importing Authority Records from Command Line

Chapter 9. Support Scripts 74
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

The major advantages of the command line approach are its speed and its convenience for system
administrators who can perform bulk loads of authority records in a controlled environment. For
alternate instructions, see the cataloging manual.

1. Run marc2are.pl against the authority records, specifying the user name, password, MARC
type (USMARC or XML). Use STDOUT redirection to either pipe the output directly into the next
command or into an output file for inspection. For example, to process a file with authority records
in MARCXML format named auth_small.xml using the default user name and password, and
directing the output into a file named auth.are:

cd Open-ILS/src/extras/import/
perl marc2are.pl --user admin --pass open-ils --marctype XML auth_small.xml > auth.are

The MARC type will default to USMARC if the --marctype option is not specified.

2. Run parallel_pg_loader.pl to generate the SQL necessary for importing the authority records into
your system. This script will create files in your current directory with filenames like pg_loader-
output.are.sql and pg_loader-output.sql (which runs the previous SQL file). To continue
with the previous example by processing our new auth.are file:

cd Open-ILS/src/extras/import/
perl parallel_pg_loader.pl --auto are --order are auth.are

To save time for very large batches of records, you could simply pipe the output of marc2are.pl
directly into parallel_pg_loader.pl.

3. Load the authority records from the SQL file that you generated in the last step into your
Evergreen database using the psql tool. Assuming the default user name, host name, and
database name for an Evergreen instance, that command looks like:

psql -U evergreen -h localhost -d evergreen -f pg_loader-output.sql

Juvenile-to-adult batch script
The batch juv_to_adult.srfsh script is responsible for toggling a patron from juvenile to adult.
It should be set up as a cron job.

This script changes patrons to adult when they reach the age value set in the library setting named
"Juvenile Age Threshold" (global.juvenile_age_threshold). When no library setting value is
present at a given patron’s home library, the value passed in to the script will be used as a default.

MARC Stream Importer

Chapter 9. Support Scripts 75
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

The MARC Stream Importer can import authority records or bibliographic records. A single running
instance of the script can import either type of record, based on the record leader.

This support script has its own configuration file, marc_stream_importer.conf, which includes
settings related to logs, ports, uses, and access control.

The importer is even more flexible than the staff client import, including the following options:

• --bib-auto-overlay-exact and --auth-auto-overlay-exact: overlay/merge on exact 901c matches

• --bib-auto-overlay-1match and --auth-auto-overlay-1match: overlay/merge when exactly one
match is found

• --bib-auto-overlay-best-match and --auth-auto-overlay-best-match: overlay/merge on best match

• --bib-import-no-match and --auth-import-no-match: import when no match is found

One advantage to using this tool instead of the staff client Import interface is that the MARC Stream
Importer can load a group of files at once.

Processing Action Triggers
To run action triggers, an Evergreen administrator will need to run the trigger processing script.
This should be set up as a cron job to run periodically. To run the script, use this command:
/openils/bin/action_trigger_runner.pl --process-hooks --run-pending

You have several options when running the script:

• --run-pending: Run pending events to send emails or take other actions as specified by the reactor
in the event definition.

• --process-hooks: Create hook events

• --osrf-config=[config_file]: OpenSRF core config file. Defaults to: /openils/conf/opensrf_core.xml

• --custom-filters=[filter_file]: File containing a JSON Object which describes any hooks that
should use a user-defined filter to find their target objects. Defaults to: /openils/conf/
action_trigger_filters.json

• --max-sleep=[seconds]: When in process-hooks mode, wait up to [seconds] for the lock file to go
away. Defaults to 3600 (1 hour).

• --hooks=hook1[,hook2,hook3,…]: Define which hooks to create events for. If none are defined, it
defaults to the list of hooks defined in the --custom-filters option. Requires --process-hooks.

• --granularity=[label]: Limit creating events and running pending events to those only with [label]
granularity setting.

• --debug-stdout: Print server responses to STDOUT (as JSON) for debugging.

• --lock-file=[file_name]: Sets the lock file for the process.

Chapter 9. Support Scripts 76
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

• --verbose: Show details of script processing.

• --help: Show help information.

Examples:

• Run all pending events that have no granularity set. This is what you tell CRON to run at regular
intervals.
perl action_trigger_runner.pl --run-pending

• Batch create all "checkout.due" events
perl action_trigger_runner.pl --hooks=checkout.due --process-hooks

• Batch create all events for a specific granularity and to send notices for all pending events with
that same granularity.
perl action_trigger_runner.pl --run-pending --granularity=Hourly --process-hooks

Chapter 9. Support Scripts 77
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

Chapter 10. Daemons and services

Starting and Stopping the Reporter Daemon

Before you can view reports, the Evergreen administrator must start the reporter daemon from the
command line of the Evergreen server.

The reporter daemon periodically checks for requests for new reports or scheduled reports and
gets them running.

Starting the Reporter Daemon

To start the reporter daemon, run the following command as the opensrf user:
clark-kent.pl --daemon

You can also specify other options:

• sleep=interval: number of seconds to sleep between checks for new reports to run; defaults to 10

• lockfile=filename: where to place the lockfile for the process; defaults to /tmp/reporter-LOCK

• concurrency=integer: number of reporter daemon processes to run; defaults to 1

• bootstrap=filename: OpenSRF bootstrap configuration file; defaults to /openils/conf/
opensrf_core.xml

The open-ils.reporter process must be running and enabled on the gateway before the reporter
daemon can be started.

Remember that if the server is restarted, the reporter daemon will need to be restarted before
you can view reports unless you have configured your server to start the daemon automatically
at start up time.

Stopping the Reporter Daemon

To stop the reporter daemon, you have to kill the process and remove the lockfile. Assuming you’re
running just a single process and that the lockfile is in the default location, perform the following
commands as the opensrf user:

Chapter 10. Daemons and services 78

kill `ps wax | grep "Clark Kent" | grep -v grep | cut -b1-6`

rm /tmp/reporter-LOCK

ebook_api service
The open-ils.ebook_api service looks up title and patron information from specified ebook vendor
APIs.

The Evergreen catalog accesses data from this service through OpenSRF JS bindings.

The OpenILS::Utils::HTTPClient module is required for this service.

hold-targeter service
The open-ils.hold-targeter service is used to target holds.

QStore service
The QStore service is used by the user buckets feature in the Web client.

Chapter 10. Daemons and services 79
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

Chapter 11. Developing with pgTAP tests

Setting up pgTAP on your development server
Currently, Evergreen pgTAP tests expect a version of pgTAP (0.93) that is not yet available in the
packages for most Linux distributions. Therefore, you will have to install pgTAP from source as
follows:

1. Download, make, and install pgTAP on your database server. pgTAP can be downloaded from
http://pgxn.org/dist/pgtap/ and the instructions for building and installing the extension are
available from http://pgtap.org/documentation.html

2. Create the pgTAP extension in your Evergreen database. Using psql, connect to your Evergreen
database and then issue the command:
CREATE EXTENSION pgtap;

Running pgTAP tests
The pgTAP tests can be found in subdirectories of Open-ILS/src/sql/Pg/ as follows:

• t: contains pgTAP unit tests that can be run on a freshly installed Evergreen database

• live_t: contains pgTAP unit tests meant to be run on an Evergreen database that also has had
the "concerto" sample data loaded on it

To run the pgTAP unit and regression tests, use the pg_prove command. For example, from the
Evergreen source directory, you can issue the command: pg_prove -U evergreen Open-ILS/
src/sql/Pg/t Open-ILS/src/sql/Pg/t/regress

Chapter 11. Developing with pgTAP tests 80

http://pgxn.org/dist/pgtap/
http://pgtap.org/documentation.html

Part IV. System Configuration

Table of Contents
12. Describing your people ... 83

Setting the staff user’s working location .. 83
Comparing approaches for managing permissions ... 84
Managing permissions in the staff client ... 85

Where to find existing permissions and what they mean ... 85
Where to find existing Permission Groups ... 85
Adding or removing permissions from a Permission Group .. 85

Managing role-based permission groups in the staff client .. 86
Secondary Group Permissions .. 86

Managing role-based permission groups in the database ... 89
Authentication Proxy .. 91
Patron Address City/State/County Pre-Populate by ZIP Code .. 92

Scoping and Permissions .. 93
Setup Steps .. 93
ZIP Code Data .. 94
Development ... 95

Apache Rewrite Tricks ... 96
Short URLs .. 96
Domain Based Content with RewriteMaps ... 96

Apache Access Handler Perl Module .. 98
Use Cases .. 99
Proxying Websites ... 99

13. Updating translations using Launchpad .. 101
Prerequisites .. 101
Updating the translations ... 101

Part IV. System Configuration 82

Chapter 12. Describing your people
Many different members of your staff will use your Evergreen system to perform the wide variety
of tasks required of the library.

When the Evergreen installation was completed, a number of permission groups should have been
automatically created. These permission groups are:

• Users

• Patrons

• Staff

• Catalogers

• Circulators

• Acquisitions

• Acquisitions Administrator

• Cataloging Administrator

• Circulation Administrator

• Local Administrator

• Serials

• System Administrator

• Global Administrator

• Data Review

• Volunteers

Each of these permission groups has a different set of permissions connected to them that allow
them to do different things with the Evergreen system. Some of the permissions are the same
between groups; some are different. These permissions are typically tied to one or more working
location (sometimes referred to as a working organizational unit or work OU) which affects where
a particular user can exercise the permissions they have been granted.

Setting the staff user’s working location
To grant a working location to a staff user in the staff client:

1. Search for the patron. Select Search > Search for Patrons from the top menu.

2. When you retrieve the correct patron record, select Other > User Permission Editor from the
upper right corner. The permissions associated with this account appear in the right side of the
client, with the Working Location list at the top of the screen.

Chapter 12. Describing your people 83

3. The Working Location list displays the Organizational Units in your consortium. Select the check
box for each Organization Unit where this user needs working permissions. Clear any other check
boxes for Organization Units where the user no longer requires working permissions.

4. Scroll all the way to the bottom of the page and click Save. This user account is now ready to
be used at your library.

As you scroll down the page you will come to the Permissions list. These are the permissions that
are given through the Permission Group that you assigned to this user. Depending on your own
permissions, you may also have the ability to grant individual permissions directly to this user.

Comparing approaches for managing
permissions
The Evergreen community uses two different approaches to deal with managing permissions for
users:

• Staff Client

Evergreen libraries that are most comfortable using the staff client tend to manage permissions
by creating different profiles for each type of user. When you create a new user, the profile
you assign to the user determines their basic set of permissions. This approach requires many
permission groups that contain overlapping sets of permissions: for example, you might need to
create a Student Circulator group and a Student Cataloger group. Then if a new employee needs
to perform both of these roles, you need to create a third Student Cataloger / Circulator group
representing the set of all of the permissions of the first two groups.

The advantage to this approach is that you can maintain the permissions entirely within the
staff client; a drawback to this approach is that it can be challenging to remember to add a new
permission to all of the groups. Another drawback of this approach is that the user profile is also
used to determine circulation and hold rules, so the complexity of your circulation and hold rules
might increase significantly.

• Database Access

Evergreen libraries that are comfortable manipulating the database directly tend to manage
permissions by creating permission groups that reflect discrete roles within a library. At the
database level, you can make a user belong to many different permission groups, and that can
simplify your permission management efforts. For example, if you create a Student Circulator
group and a Student Cataloger group, and a new employee needs to perform both of these roles,
you can simply assign them to both of the groups; you do not need to create an entirely new
permission group in this case. An advantage of this approach is that the user profile can represent
only the user’s borrowing category and requires only the basic Patrons permissions, which can
simplify your circulation and hold rules.

Permissions and profiles are not carved in stone. As the system administrator, you can change
them as needed. You may set and alter the permissions for each permission group in line with
what your library, or possibly your consortium, defines as the appropriate needs for each function
in the library.

Chapter 12. Describing your people 84
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

Managing permissions in the staff client
In this section, we’ll show you in the staff client:

• where to find the available permissions

• where to find the existing permission groups

• how to see the permissions associated with each group

• how to add or remove permissions from a group

We also provide an appendix with a listing of suggested minimum permissions for some essential
groups. You can compare the existing permissions with these suggested permissions and, if any
are missing, you will know how to add them.

Where to find existing permissions and what they mean
In the staff client, in the upper right corner of the screen, click on Administration > Server
Administration > Permissions.

The list of available permissions will appear on screen and you can scroll down through them to
see permissions that are already available in your default installation of Evergreen.

There are over 500 permissions in the permission list. They appear in two columns: Code and
Description. Code is the name of the permission as it appear in the Evergreen database. Description
is a brief note on what the permission allows. All of the most common permissions have easily
understandable descriptions.

Where to find existing Permission Groups
In the staff client, in the upper right corner of the screen, navigate to Administration > Server
Administration > Permission Groups.

Two panes will open on your screen. The left pane provides a tree view of existing Permission
Groups. The right pane contains two tabs: Group Configuration and Group Permissions.

In the left pane, you will find a listing of the existing Permission Groups which were installed by
default. Click on the + sign next to any folder to expand the tree and see the groups underneath
it. You should see the Permission Groups that were listed at the beginning of this chapter. If you
do not and you need them, you will have to create them.

Adding or removing permissions from a Permission Group
First, we will remove a permission from the Staff group.

1. From the list of Permission Groups, click on Staff.

2. In the right pane, click on the Group Permissions tab. You will now see a list of permissions that
this group has.

Chapter 12. Describing your people 85
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

3. From the list, choose CREATE_CONTAINER. This will now be highlighted.

4. Click the Delete Selected button. CREATE_CONTAINER will be deleted from the list. The system
will not ask for a confirmation. If you delete something by accident, you will have to add it back.

5. Click the Save Changes button.

You can select a group of individual items by holding down the Ctrl key and clicking on them. You
can select a list of items by clicking on the first item, holding down the Shift key, and clicking on
the last item in the list that you want to select.

Now, we will add the permission we just removed back to the Staff group.

1. From the list of Permission Groups, click on Staff.

2. In the right pane, click on the Group Permissions tab.

3. Click on the New Mapping button. The permission mapping dialog box will appear.

4. From the Permission drop down list, choose CREATE_CONTAINER.

5. From the Depth drop down list, choose Consortium.

6. Click the checkbox for Grantable.

7. Click the Add Mapping button. The new permission will now appear in the Group Permissions
window.

8. Click the Save Changes button.

If you have saved your changes and you don’t see them, you may have to click the Reload button
in the upper left side of the staff client screen.

Managing role-based permission groups in the
staff client
Main permission groups are granted in the staff client through Edit in the patron record using the
Main (Profile) Permission Group field. Additional permission groups can be granted using secondary
permission groups.

Secondary Group Permissions
The Secondary Groups button functionality enables supplemental permission groups to be added
to staff accounts. The CREATE_USER_GROUP_LINK and REMOVE_USER_GROUP_LINK permissions
are required to display and use this feature.

In general when creating a secondary permission group do not grant the permission to login to
Evergreen.

Granting Secondary Permissions Groups

1. Open the account of the user you wish to grant secondary permission group to.

Chapter 12. Describing your people 86
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

2. Click Edit.

3. Click Secondary Groups, located to the right of the Main (Profile) Permission Group.

4. From the dropdown menu select one of the secondary permission groups.

5. Click Add.

6. Click Apply Changes.

7. Click Save in the top right hand corner of the Edit Screen to save the user’s account.

Chapter 12. Describing your people 87
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

Removing Secondary Group Permissions

1. Open the account of the user you wish to remove the secondary permission group from.

2. Click Edit.

3. Click Secondary Groups, located to the right of the Main (Profile) Permission Group.

4. Click Delete beside the permission group you would like to remove.

5. Click Apply Changes.

6. Click Save in the top right hand corner of the Edit Screen to save the user’s account.

Chapter 12. Describing your people 88
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

Managing role-based permission groups in the
database
While the ability to assign a user to multiple permission groups has existed in Evergreen for years, a
staff client interface is not currently available to facilitate the work of the Evergreen administrator.
However, if you or members of your team are comfortable working directly with the Evergreen
database, you can use this approach to separate the borrowing profile of your users from the
permissions that you grant to staff, while minimizing the amount of overlapping permissions that
you need to manage for a set of permission groups that would otherwise multiply exponentially to
represent all possible combinations of staff roles.

In the following example, we create three new groups:

• a Student group used to determine borrowing privileges

• a Student Cataloger group representing a limited set of cataloging permissions appropriate for
students

• a Student Circulator group representing a limited set of circulation permissions appropriate for
students

Then we add three new users to our system: one who needs to perform some cataloging duties
as a student; one who needs perform some circulation duties as a student; and one who needs
to perform both cataloging and circulation duties. This section demonstrates how to add these
permissions to the users at the database level.

To create the Student group, add a new row to the permission.grp_tree table as a child of the
Patrons group:
INSERT INTO permission.grp_tree (name, parent, usergroup, description, application_perm)
SELECT 'Students', pgt.id, TRUE, 'Student borrowers', 'group_application.user.patron.student'
FROM permission.grp_tree pgt
 WHERE name = 'Patrons';

To create the Student Cataloger group, add a new row to the permission.grp_tree table as a child
of the Staff group:
INSERT INTO permission.grp_tree (name, parent, usergroup, description, application_perm)
SELECT 'Student Catalogers', pgt.id, TRUE, 'Student catalogers',
 'group_application.user.staff.student_cataloger'
FROM permission.grp_tree pgt
WHERE name = 'Staff';

To create the Student Circulator group, add a new row to the permission.grp_tree table as a child
of the Staff group:
INSERT INTO permission.grp_tree (name, parent, usergroup, description, application_perm)
SELECT 'Student Circulators', pgt.id, TRUE, 'Student circulators',
 'group_application.user.staff.student_circulator'
FROM permission.grp_tree pgt
WHERE name = 'Staff';

We want to give the Student Catalogers group the ability to work with MARC records at the
consortial level, so we assign the UPDATE_MARC, CREATE_MARC, and IMPORT_MARC permissions
at depth 0:

Chapter 12. Describing your people 89
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

WITH pgt AS (
 SELECT id
 FROM permission.grp_tree
 WHERE name = 'Student Catalogers'
)
INSERT INTO permission.grp_perm_map (grp, perm, depth)
SELECT pgt.id, ppl.id, 0
FROM permission.perm_list ppl, pgt
WHERE ppl.code IN ('UPDATE_MARC', 'CREATE_MARC', 'IMPORT_MARC');

Similarly, we want to give the Student Circulators group the ability to check out copies and record
in-house uses at the system level, so we assign the COPY_CHECKOUT and CREATE_IN_HOUSE_USE
permissions at depth 1 (overriding the same Staff permissions that were granted only at depth 2):
WITH pgt AS (
 SELECT id
 FROM permission.grp_tree
 WHERE name = 'Student Circulators'
) INSERT INTO permission.grp_perm_map (grp, perm, depth)
SELECT pgt.id, ppl.id, 1
FROM permission.perm_list ppl, pgt
WHERE ppl.code IN ('COPY_CHECKOUT', 'CREATE_IN_HOUSE_USE');

Finally, we want to add our students to the groups. The request may arrive in your inbox from
the library along the lines of "Please add Mint Julep as a Student Cataloger, Bloody Caesar as a
Student Circulator, and Grass Hopper as a Student Cataloguer / Circulator; I’ve already created
their accounts and given them a work organizational unit." You can translate that into the following
SQL to add the users to the pertinent permission groups, adjusting for the inevitable typos in the
names of the users.

First, add our Student Cataloger:
WITH pgt AS (
 SELECT id FROM permission.grp_tree
 WHERE name = 'Student Catalogers'
)
INSERT INTO permission.usr_grp_map (usr, grp)
SELECT au.id, pgt.id
FROM actor.usr au, pgt
WHERE first_given_name = 'Mint' AND family_name = 'Julep';

Next, add the Student Circulator:
WITH pgt AS (
 SELECT id FROM permission.grp_tree
 WHERE name = 'Student Circulators'
)
INSERT INTO permission.usr_grp_map (usr, grp)
SELECT au.id, pgt.id
FROM actor.usr au, pgt
WHERE first_given_name = 'Bloody' AND family_name = 'Caesar';

Finally, add the all-powerful Student Cataloger / Student Circulator:
 WITH pgt AS (
 SELECT id FROM permission.grp_tree
 WHERE name IN ('Student Catalogers', 'Student Circulators')
)
INSERT INTO permission.usr_grp_map (usr, grp)
SELECT au.id, pgt.id
FROM actor.usr au, pgt
WHERE first_given_name = 'Grass' AND family_name = 'Hopper';

Chapter 12. Describing your people 90
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

While adopting this role-based approach might seem labour-intensive when applied to a handful
of students in this example, over time it can help keep the permission profiles of your system
relatively simple in comparison to the alternative approach of rapidly reproducing permission
groups, overlapping permissions, and permissions granted on a one-by-one basis to individual
users.

Authentication Proxy

To support integration of Evergreen with organizational authentication systems, and to reduce the
proliferation of user names and passwords, Evergreen offers a service called open-ils.auth_proxy.
If you enable the service, open-ils.auth_proxy supports different authentication mechanisms that
implement the authenticate method. You can define a chain of these authentication mechanisms
to be tried in order within the <authenticators> element of the opensrf.xml configuration file, with
the option of falling back to the native mode that uses Evergreen’s internal method of password
authentication.

This service only provides authentication. There is no support for automatic provisioning of
accounts. To authenticate using any authentication system, the user account must first be defined
in the Evergreen database. The user will be authenticated based on the Evergreen username and
must match the user’s ID on the authentication system.

In order to activate Authentication Proxy, the Evergreen system administrator will need to complete
the following steps:

1. Edit opensrf.xml.

a. Set the open-ils.auth_proxy app settings enabled tag to true

b. Add the authenticator to the list of authenticators or edit the existing example authenticator:
<authenticator>
 <name>ldap</name>
 <module>OpenILS::Application::AuthProxy::LDAP_Auth</module>
 <hostname>name.domain.com</hostname>
 <basedn>ou=people,dc=domain,dc=com</basedn>
 <authid>cn=username,ou=specials,dc=domain,dc=com</authid>
 <id_attr>uid</id_attr>
 <password>my_ldap_password_for_authid_user</password>
 <login_types>
 <type>staff</type>
 <type>opac</type>
 </login_types>
 <org_units>
 <unit>103</unit>
 <unit>104</unit>
 </org_units>
</authenticator>

• name : Used to identify each authenticator.

• module : References to the perl module used by Evergreen to process the request.

Chapter 12. Describing your people 91
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

• hostname : Hostname of the authentication server.

• basedn : Location of the data on your authentication server used to authenticate users.

• authid : Administrator ID information used to connect to the Authentication server.

• id_attr : Field name in the authenticator matching the username in the Evergreen database.

• password : Administrator password used to connect to the authentication server. Password
for the authid.

• login_types : Specifies which types of logins will use this authenticator. This might be useful
if staff use a different LDAP directory than general users.

• org_units : Specifies which org units will use the authenticator. This is useful in a consortium
environment where libraries will use separate authentication systems.

2. Restart Evergreen and Apache to activate configuration changes.

If using proxy authentication with library employees that will click the Change Operator feature
in the client software, then add "Temporary" as a login_types.

Patron Address City/State/County Pre-Populate
by ZIP Code

This feature saves staff time and increases accuracy when entering patron address information by
automatically filling in the City, State and County information based on the ZIP code entered by
the staff member.

Released: Evergreen 0.1, available in all versions.

Please be aware of the following when using this feature.

• ZIP codes do not always match 1 to 1 with City, State and County. ZIP codes were designed for
postal delivery and represent postal delivery zones that may cover more than one city, state
or county.

• It is currently only possible to have one match per ZIP code, but you can add an alert to those
entries to prompt staff to double check the entered data.

• Only the first 5 digits of the ZIP are used. ZIP+4 is not currently supported.

• The zips.txt data is loaded once at service startup and stored in memory, so changes to the
zips.txt data file require that Evergreen be restarted. Specifically, you need to restart the "open-
ils.search" OpenSRF service.

Chapter 12. Describing your people 92
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

Scoping and Permissions
There are no staff client permissions associated with this feature since there is no staff client
interface.

This feature affects all users of the system; there is no way to have separate settings per Org Unit.

Setup Steps

Step 1 - Setup Data File

The default location and name of the data file is /openils/var/data/zips.txt on your Evergreen server.
You can choose a different location if needed.

The file format of your zips.txt will look like this (delimited by the .):

ID|StateAbb|City|ZIP|IsDefault|StateID|County|AreaCode|AlertMesg

The only fields that are used are StateAbb, City, ZIP, IsDefault, County and AlertMesg.

Most fields can be left blank if the information is not available and that data will not be entered.

Data Field Descriptions
1. ID - ID field to uniquely identify this row. Not required, can be left blank.

2. StateAbb - State abbreviation like "MN" or "ND".

3. City - Name of city.

4. ZIP - ZIP code, only first 5 digits used.

5. IsDefault - Must be set to 1 for the row to be used. Easy way to disable/enable a row.

6. StateID - Unknown and unused.

7. County - County name.

8. AreaCode - Phone number area code, unused.

9. AlertMesg - Message to display to staff to alert them of any special circumstances.

The Address Alerts feature — described in the Staff Client Sysadmin manual — can also be used
to alert staff about certain addresses.

Here is an example of what the data file should look like.

Example zips.txt.
|MN|Moorhead|56561|1||Clay||
|MN|Moorhead|56562|1||Clay||

Chapter 12. Describing your people 93
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

MN	Moorhead	56563	1		Clay	
MN	Sabin	56580	1		Clay	
MN	Ulen	56585	1		Clay	
MN	Lake Itasca	56460	1		Clearwater County	
MN	Bagley	56621	1		Clearwater	
MN	Clearbrook	56634	1		Clearwater	
MN	Gonvick	56644	1		Clearwater	

Step 2 - Enable Feature

The next step is to tell the system to use the zips.txt file that you created. This is done by editing /
openils/conf/opensrf.xml. Look about halfway into the file and you may very well see a commented
section in the file that looks similar to this:
 <!-- zip code database file -->
 <!--<zips_file>/openils/var/data/zips.txt</zips_file>-->
 </app_settings>
</open-ils.search>

Uncomment the area by . .. Change the file path if you placed your file in a different location. The
file should look like this after you are done.
 <!-- zip code database file -->
 <zips_file>/openils/var/data/zips.txt</zips_file>
 </app_settings>
</open-ils.search>

Save and Restart. Save your changes to the opensrf.xml file, restart Evergreen and restart
Apache.

The specific opensrf services you need to restart are "opensrf.setting" and "open-ils.search".

Step 3 - Test

Open up the staff client and try to register a new patron. When you get to the address section,
enter a ZIP code that you know is in your zips.txt file. The data from the file that matches your ZIP
will auto fill the city, state and county fields.

ZIP Code Data
There are several methods you can use to populate your zips.txt with data.

Manual Entry

If you only have a few communities that you serve, entering data manually may be the simplest
approach.

Geonames.org Data

Geonames.org provides free ZIP code to city, state and county information licensed under the
Creative Commons Attribution 3.0 License, which means you need to put a link to them on your

Chapter 12. Describing your people 94
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

website. Their data includes primary city, state and county information only. It doesn’t include info
about which other cities are included in a ZIP code. Visit http://www.geonames.org for more info.

The following code example shows you how to download and reformat the data into the zips.txt
format. You have the option to filter the data to only include certain states also.
How to get a generic Evergreen zips.txt for free
wget http://download.geonames.org/export/zip/US.zip
unzip US.zip
cut -f2,3,5,6 US.txt \
| perl -ne 'chomp; @f=split(/\t/); print "|" . join("|", (@f[2,1,0], "1", "", $f[3], "")), "|\n";' \
> zips.txt

##Optionally filter the data to only include certain states
egrep "^\|(ND|MN|WI|SD)\|" zips.txt > zips-mn.txt

Commercial Data

There are many vendors that sell databases that include ZIP code to city, state and county
information. A web search will easily find them. Many of the commercial vendors will include more
information on which ZIP codes cover multiple cities, counties and states, which you could use to
populate the alert field.

Existing Patron Database

Another possibility is to use your current patron database to build your zips.txt. Pull out the current
ZIP, city, state, county unique rows and use them to form your zips.txt.

Small Sites. For sites that serve a small geographic area (less than 30 ZIP codes), an sql query
like the following will create a zips.txt for you. It outputs the number of matches as the first field
and sorts by ZIP code and number of matches. You would need to go through the resulting file and
deal with duplicates manually.
psql egdb26 -A -t -F $'|' \
 -c "SELECT count(substring(post_code from 1 for 5)) as zipcount, state, \
 city, substring(post_code from 1 for 5) as pc, \
 '1', '', county, '', '' FROM actor.usr_address \
 group by pc, city, state, county \
 order by pc, zipcount DESC" > zips.txt

Larger Sites. For larger sites Ben Ostrowsky at ESI created a pair of scripts that handles
deduplicating the results and adding in county information. Instructions for use are included in the
files.

• http://git.esilibrary.com/?p=migration-tools.git;a=blob;f=elect_ZIPs

• http://git.esilibrary.com/?p=migration-tools.git;a=blob;f=enrich_ZIPs

Development
If you need to make changes to how this feature works, such as to add support for other postal
code formats, here is a list of the files that you need to look at.

1. Zips.pm - contains code for loading the zips.txt file into memory and replying to search queries.
Open-ILS / src / perlmods / lib / OpenILS / Application / Search / Zips.pm

Chapter 12. Describing your people 95
Report errors in this documentation using Launchpad.

http://www.geonames.org
http://git.esilibrary.com/?p=migration-tools.git;a=blob;f=elect_ZIPs
http://git.esilibrary.com/?p=migration-tools.git;a=blob;f=enrich_ZIPs
https://bugs.launchpad.net/evergreen/+filebug

2. register.js - This is where patron registration logic is located. The code that queries the ZIP search
service and fills the address is located here. Open-ILS / web / js / ui / default / actor / user /
register.js

Apache Rewrite Tricks
It is possible to use Apache’s Rewrite Module features to perform a number of useful tricks that
can make people’s lives much easier.

Short URLs
Making short URLs for common destinations can simplify making printed media as well as
shortening or simplifying what people need to type. These are also easy to add and require minimal
maintenance, and generally can be implemented with a single line addition to your eg_vhost.conf
file.
My Account - http://host.ext/myaccount -> My Account Page
RewriteRule ^/myaccount https://%{HTTP_HOST}/eg/opac/myopac/main [R]

ISBN Search - http://host.ext/search/isbn/<ISBN NUMBER> -> Search Page
RewriteRule ^/search/isbn/(.*) /eg/opac/results?_special=1&qtype=identifier|isbn&query=$1 [R]

Domain Based Content with RewriteMaps
One creative use of Rewrite features is domain-based configuration in a single eg_vhost.conf file.
Regardless of how many VirtualHost blocks use the configuration you don’t need to duplicate things
for minor changes, and can in fact use wildcard VirtualHost blocks to serve multiple subdomains.

For the wildcard blocks you will want to use a ServerAlias directive, and for SSL VirtualHost blocks
ensure you have a wildcard SSL certificate.
ServerAlias *.example.com

For actually changing things based on the domain, or subdomain, you can use RewriteMaps. Each
RewriteMap is generally a lookup table of some kind. In the following examples we will generally
use text files, though database lookups and external programs are also possible.

Note that in the examples below we generally store things in Environment Variables. From within
Template Toolkit templates you can access environment variables with the ENV object.

Template Toolkit ENV example, link library name/url if set.
[% IF ENV.eglibname && ENV.egliburl %][% ENV.eglibname %][% END %]

The first lookup to do is a domain to identifier, allowing us to re-use identifiers for multiple domains.
In addition we can also supply a default identifier, for when the domain isn’t present in the lookup
table.

Apache Config.
This internal map allows us to lowercase our hostname, removing case issues in our lookup table
If you prefer uppercase you can use "uppercase int:toupper" instead.
RewriteMap lowercase int:tolower
This provides a hostname lookup
RewriteMap eglibid txt:/openils/conf/libid.txt

Chapter 12. Describing your people 96
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

This stores the identifier in a variable (eglibid) for later use
In this case CONS is the default value for when the lookup table has no entry
RewriteRule . - [E=eglibid:${eglibid:${lowercase:%{HTTP_HOST}}|CONS}]

Contents of libid.txt File.
Comments can be included
Multiple TLDs for Branch 1
branch1.example.com BRANCH1
branch1.example.net BRANCH1
Branches 2 and 3 don't have alternate TLDs
branch2.example.com BRANCH2
branch3.example.com BRANCH3

Once we have identifiers we can look up other information, when appropriate. For example, say
we want to look up library names and URLs:

Apache Config.
Library Name Lookup - Note we provide no default in this case.
RewriteMap eglibname txt:/openils/conf/libname.txt
RewriteRule . - [E=eglibname:${eglibname:%{ENV:eglibid}}]
Library URL Lookup - Also with no default.
RewriteMap egliburl txt:/openils/conf/liburl.txt
RewriteRule . - [E=egliburl:${egliburl:%{ENV:eglibid}}]

Contents of libname.txt File.
Note that we cannot have spaces in the "value", so instead is used. is also an option.
BRANCH1 Branch One
BRANCH2 Branch Two
BRANCH3 Branch Three
CONS Example Consortium Name

Contents of liburl.txt File.
BRANCH1 http://branch1.example.org
BRANCH2 http://branch2.example.org
BRANCH3 http://branch3.example.org
CONS http://example.org

Or, perhaps set the "physical location" variable for default search/display library:

Apache Config.
Lookup "physical location" IDs
RewriteMap eglibphysloc txt:/openils/conf/libphysloc.txt
Note: physical_loc is a variable used in the TTOPAC and should not be re-named
RewriteRule . - [E=physical_loc:${eglibphysloc:%{ENV:eglibid}}]

Contents of libphysloc.txt File.
BRANCH1 4
BRANCH2 5
BRANCH3 6
CONS 1

Going further, you could also replace files to be downloaded, such as images or stylesheets, on
the fly:

Apache Config.
Check if a file exists based on eglibid and the requested file name
Say, BRANCH1/opac/images/main_logo.png

Chapter 12. Describing your people 97
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

RewriteCond %{DOCUMENT_ROOT}/%{ENV:eglibid}%{REQUEST_URI} -f
Serve up the eglibid version of the file instead
RewriteRule (.*) /%{ENG:eglibid}$1

Note that template files themselves cannot be replaced in that manner.

Apache Access Handler Perl Module
The OpenILS::WWW::AccessHandler Perl module is intended for limiting patron access to configured
locations in Apache. These locations could be folder trees, static files, non-Evergreen dynamic
content, or other Apache features/modules. It is intended as a more patron-oriented and
transparent version of the OpenILS::WWW::Proxy and OpenILS::WWW:Proxy::Authen modules.

Instead of using Basic Authentication the AccessHandler module instead redirects to the OPAC for
login. Once logged in additional checks can be performed, based on configured variables:

• Permission Checks (at Home OU or specified location)

• Home OU Checks (Org Unit or Descendant)

• "Good standing" Checks (Not Inactive or Barred)

Use of the module is a simple addition to a Location block in Apache:
<Location /path/to/be/protected>
 PerlAccessHandler OpenILS::WWW::AccessHandler
 # For each option you wish to set:
 PerlSetVar OPTION "VALUE"
</Location>

The available options are:

OILSAccessHandlerLoginURL • Default: /eg/opac/login

• The page to redirect to when Login is needed

OILSAccessHandlerLoginURLRedirectVar• Default: redirect_to

• The variable the login page wants the "destination" URL stored in

OILSAccessHandlerFailURL • Default: <unset>

• URL to go to if Permission, Good Standing, or Home OU checks fail.
If not set a 403 error is generated instead. To customize the 403
you could use an ErrorDocument statement.

OILSAccessHandlerCheckOU • Default: <User Home OU>

• Org Unit to check Permissions at and/or to load Referrer from. Can
be a shortname or an ID.

OILSAccessHandlerPermission • Default: <unset>

• Permission, or comma- or space-delimited set of permissions, the
user must have to access the protected area.

Chapter 12. Describing your people 98
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

OILSAccessHandlerGoodStanding• Default: 0

• If set to a true value the user must be both Active and not Barred.

OILSAccessHandlerHomeOU • Default: <unset>

• An Org Unit, or comma- or space-delimited set of Org Units, that
the user’s Home OU must be equal to or a descendant of to access
this resource. Can be set to shortnames or IDs.

OILSAccessHandlerReferrerSetting• Default: <unset>

• Library Setting to pull a forced referrer string out of, if set.

As the AccessHandler module does not actually serve the content it is protecting, but instead merely
hands control back to Apache when it is done authenticating, you can protect almost anything else
you can serve with Apache.

Use Cases
The general use of this module is "protect access to something else" - what that something else
is will vary. Some possibilities:

• Apache features

• Automatic Directory Indexes

• Proxies (see below)

• Electronic Databases

• Software on other servers/ports

• Non-Evergreen software

• Timekeeping software for staff

• Specialized patron request packages

• Static files and folders

• Semi-public Patron resources

• Staff-only downloads

Proxying Websites
One potentially interesting use of the AccessHandler module is to protect an Apache Proxy
configuration. For example, after installing and enabling mod_proxy, mod_proxy_http, and
mod_proxy_html you could proxy websites like so:
<Location /proxy/>

Chapter 12. Describing your people 99
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

 # Base "Rewrite URLs" configuration
 ProxyHTMLLinks a href
 ProxyHTMLLinks area href
 ProxyHTMLLinks link href
 ProxyHTMLLinks img src longdesc usemap
 ProxyHTMLLinks object classid codebase data usemap
 ProxyHTMLLinks q cite
 ProxyHTMLLinks blockquote cite
 ProxyHTMLLinks ins cite
 ProxyHTMLLinks del cite
 ProxyHTMLLinks form action
 ProxyHTMLLinks input src usemap
 ProxyHTMLLinks head profile
 ProxyHTMLLinks base href
 ProxyHTMLLinks script src for

 # To support scripting events (with ProxyHTMLExtended On)
 ProxyHTMLEvents onclick ondblclick onmousedown onmouseup \
 onmouseover onmousemove onmouseout onkeypress \
 onkeydown onkeyup onfocus onblur onload \
 onunload onsubmit onreset onselect onchange

 # Limit all Proxy connections to authenticated sessions by default
 PerlAccessHandler OpenILS::WWW::AccessHandler

 # Strip out Evergreen cookies before sending to remote server
 RequestHeader edit Cookie "^(.*?)ses=.*?(?:$|;)(.*)$" $1$2
 RequestHeader edit Cookie "^(.*?)eg_loggedin=.*?(?:$|;)(.*)$" $1$2
</Location>

<Location /proxy/example/>
 # Proxy example.net
 ProxyPass http://www.example.net/
 ProxyPassReverse http://www.example.net/
 ProxyPassReverseCookieDomain example.net example.com
 ProxyPassReverseCookiePath / /proxy/example/

 ProxyHTMLEnable On
 ProxyHTMLURLMap http://www.example.net/ /proxy/example/
 ProxyHTMLURLMap / /proxy/mail/
 ProxyHTMLCharsetOut *

 # Limit to BR1 and BR3 users
 PerlSetVar OILSAccessHandlerHomeOU "BR1,BR3"
</Location>

As mentioned above, this can be used for multiple reasons. In addition to websites such as online
databases for patron use you may wish to proxy software for staff or patron use to make it appear
on your catalog domain, or perhaps to keep from needing to open extra ports in a firewall.

Chapter 12. Describing your people 100
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

Chapter 13. Updating translations using
Launchpad
This document describes how to update the translations in an Evergreen branch by pulling them
from Launchpad, as well as update the files to be translated in Launchpad by updating the POT
files in the Evergreen master branch.

Prerequisites
You must install all of the Python prerequisites required for building translations, per http://
evergreen-ils.org/dokuwiki/doku.php?id=evergreen-admin:customizations:i18n

• polib

• translate-toolkit

• levenshtein

• setuptools

• simplejson

• lxml

Updating the translations
1. Check out the latest translations from Launchpad by branching the Bazaar repository:

bzr branch lp:~denials/evergreen/translation-export

This creates a directory called "translation-export".

2. Ensure you have an updated Evergreen release branch.

3. Run the build/i18n/scripts/update_pofiles script to copy the translations into the right
place and avoid any updates that are purely metadata (dates generated, etc).

4. Commit the lot! And backport to whatever release branches need the updates.

5. Build updated POT files:
cd build/i18n
make newpot

This will extract all of the strings from the latest version of the files in Evergreen.

6. (This part needs automation): Then, via the magic of git diff and git add, go through all of the
changed files and determine which ones actually have string changes. Recommended approach
is to re-run git diff after each git add.

Chapter 13. Updating translations using Launchpad 101

http://evergreen-ils.org/dokuwiki/doku.php?id=evergreen-admin:customizations:i18n
http://evergreen-ils.org/dokuwiki/doku.php?id=evergreen-admin:customizations:i18n
https://bitbucket.org/izi/polib/wiki/Home
http://translate.sourceforge.net
http://pypi.python.org/pypi/python-Levenshtein/
http://pypi.python.org/pypi/setuptools
http://pypi.python.org/pypi/simplejson/
http://lxml.de/

7. Commit the updated POT files and backport to the pertinent release branches.

Chapter 13. Updating translations using Launchpad 102
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

Part V. Cataloging Administration

Table of Contents
14. Cataloging Staff Interface .. 105

Administering the Physical Characteristics Wizard .. 105
15. Cataloging timesavers and shortcuts .. 106

MARC Templates .. 106
Adding MARC Templates ... 106

16. Notes about the Bibliographic Schema in the Database ... 108
Bibliographic fingerprint ... 108

Part V. Cataloging Administration 104

Chapter 14. Cataloging Staff Interface

Administering the Physical Characteristics
Wizard

The MARC 007 Field Physical Characteristics Wizard enables catalogers to interact with a database
wizard that leads the user step-by-step through the MARC 007 field positions. The wizard displays
the significance of the current position and provides dropdown lists of possible values for the various
components of the MARC 007 field in a more user-friendly way.

The information driving the MARC 007 Field Physical Characteristics Wizard is already a part of
the Evergreen database. This data can be customized by individual sites and / or updated when
the Library of Congress dictates new values or positions in the 007 field. There are three relevant
tables where the information that drives the wizard is stored:

1. config.marc21_physical_characteristic_type_map contains the list of materials, or values, for the
positions of the 007 field.

2. config.marc21_physical_characteristic_subfield_map contains rows that list the meaning of the
various positions in the 007 field for each Category of Material.

3. config.marc21_physical_characteristic_value_map lists all of the values possible for all of the
positions in the config.marc21_physical_characteristic_subfield_map table.

Chapter 14. Cataloging Staff Interface 105

Chapter 15. Cataloging timesavers and
shortcuts

MARC Templates
MARC Templates make the cataloging process more efficient for catalogers. At this time, MARC
Templates have to be created on the server, rather than in the Web client.

Adding MARC Templates

1. Create a marc template in the directory /openils/var/templates/marc/. It should be in xml format.
Here is an example file k_book.xml:

<record>
 <leader>00620cam a2200205Ka 4500</leader>
 <controlfield tag="008">070101s eng d</controlfield>
 <datafield tag="010" ind1="" ind2="">
 <subfield code="a"></subfield>
 </datafield>
 <datafield tag="020" ind1="" ind2="">
 <subfield code="a"></subfield>
 </datafield>
 <datafield tag="082" ind1="0" ind2="4">
 <subfield code="a"></subfield>
 </datafield>
 <datafield tag="092" ind1="" ind2="">
 <subfield code="a"></subfield>
 </datafield>
 <datafield tag="100" ind1="" ind2="">
 <subfield code="a"></subfield>
 </datafield>
 <datafield tag="245" ind1="" ind2="">
 <subfield code="a"></subfield>
 <subfield code="b"></subfield>
 <subfield code="c"></subfield>
 </datafield>
 <datafield tag="260" ind1="" ind2="">
 <subfield code="a"></subfield>
 <subfield code="b"></subfield>
 <subfield code="c"></subfield>
 </datafield>
 <datafield tag="300" ind1="" ind2="">
 <subfield code="a"></subfield>
 <subfield code="b"></subfield>
 <subfield code="c"></subfield>
 </datafield>
 <datafield tag="500" ind1="" ind2="">
 <subfield code="a"></subfield>
 </datafield>
 <datafield tag="650" ind1="" ind2="">
 <subfield code="a"></subfield>
 <subfield code="v"></subfield>
 </datafield>
 <datafield tag="650" ind1="" ind2="">
 <subfield code="a"></subfield>
 </datafield>
</record>

Chapter 15. Cataloging timesavers and shortcuts 106

2. Add the template to the to the marctemplates list in the open-ils.cat section of the Evergreen
configuration file opensrf.xml.

3. Restart perl services for changes to take effect with the command /openils/bin/osrf_control
-l --restart --service=open-ils.cat

Chapter 15. Cataloging timesavers and shortcuts 107
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

Chapter 16. Notes about the Bibliographic
Schema in the Database

Bibliographic fingerprint
Evergreen creates a fingerprint for each bib record, which can be found in the fingerprint column
of the biblio.record_entry table. This fingerprint is used to group together different bib records
in a Group Formats & Editions search in the public catalog.

The bibliographic fingerprint incorporates several subfields to distinguish between different items,
including:

• $n and $p from MARC title fields to better distinguish among records of the same series that may
share the same title but have a different part.

The bibliographic fingerprint distinguishes among the fields contributing to the fingerprint. This
helps the system distinguish between a record for the movie Blue Steel and another record for the
book Blue written by Danielle Steel.

Chapter 16. Notes about the Bibliographic Schema in the Database 108

Part VI. Managing Staff
from the Command Line

Table of Contents
17. Changing passwords ... 111

Part VI. Managing Staff from the Command Line 110

Chapter 17. Changing passwords
If you need to change a patron or staff account password without using the staff client, here is how
you can reset it with SQL.

Connect to your Evergreen database using psql or similar tool, and retrieve and verify your admin
username:
psql -U <user-name> -h <hostname> -d <database>

SELECT id, usrname, passwd from actor.usr where usrname = 'admin';

If you do not remember the username that you set, search for it in the actor.usr table, and then
reset the password.
UPDATE actor.usr SET passwd = <password> WHERE id=<id of row to be updated>;

The new password will automatically be hashed.

Chapter 17. Changing passwords 111

Part VII. Patron Data

Table of Contents
18. Aging Circulations .. 114

Global Flags ... 114
What Data is Aged? ... 114
How Circulations are Aged ... 115
Impacts on Billing Data .. 115

19. Purging holds ... 117
20. Purge User Activity .. 118

Part VII. Patron Data 113

Chapter 18. Aging Circulations

Use case

Aging circulations helps to protect patron privacy and save disk space.

Evergreen allows for the bulk anonymization of circulation histories. Evergreen calls this aged
circulation. Circulation statistics are preserved (total circs, last checkout/renewal date, checkout/
renewal/checkin workstation, etc) but patron information (name : barcode) is replaced with <Aged
Circulation> text and the link to the patron record is removed.

In the client, <Aged Circulation> will show in the patron field in Circulation History Tab and Show
Last Few Circulations.

In the database, every time you attempt to DELETE a row from action.circ, it copies over the
appropriate data to action.aged_circulation, then deletes the action.circ row.

Global Flags
There are four global flags used for aging circulations.

1. Historical Circulation Retention Age - determines the timeframe for aging circulations based on
transaction age (7 days, 14 days, 30 days, etc).

2. Historical Circulations Per Copy - determines how many circulations to keep (ex. 1, 2, 3). If set
to 1, Evergreen will always keep the last (most recent) circulation.

3. Historical Circulations use most recent xact_finish date instead of last circ’s (true or false)

4. Historical Circulations are kept for global retention age at a minimum, regardless of user
preferences (true or false)

What Data is Aged?
Only completed transactions are aged. These circulations have been checked in (returned) and do
not contain any unpaid fines or bills.

Data that is not aged includes:

• open transactions (i.e. checked out)

• closed transactions with unpaid fines

• closed transactions with unpaid bills

• the last X circulation(s) (determined by historical circulations per copy flag)

Chapter 18. Aging Circulations 114

Aging circulations will not affect a patron being able to keep their checkout history. Minimal
metadata is stored in the patron checkout history table. Once the corresponding circulation is
aged, the full circulation metadata is no longer linked to the patron’s reading history.

Just aging circulations is not sufficient to protect patron circulation history. Fully protecting these
data would also involve a thoughtful approach to logs and backups of these data.

You can create a cron job to automatically age circulations.

How Circulations are Aged
The action.aged_circulation table is for statistical reporting while breaking the link to the patron
who had the item checked out.

Circulations get moved under three circumstances in stock Evergreen:

1. A patron is deleted. This moves all of the patron’s circulations from action.circulation to
action.aged_circulation

2. A row or row(s) in action.circulation are deleted. The action.age_circ_on_delete trigger moves
deleted action.circulations to action.aged_circulation.

3. The action.purge_circulations function is run. This function is meant to be run periodically to
enforce patron privacy. It’s behavior is controlled by two internal flags: history.circ.retention_age
and history.circ.retention_count.

The purge_circulations function is often run from a cron via the purge_circulations.srfsh script.

The purge_circulations function will take a long time to run for the first time on a system that
has had much activity. The srfsh script will likely time out before the database function finishes
and nothing will get moved.

Impacts on Billing Data
Rows are deleted from money.materialized_billable_xact_summary when circulations are aged.
This table is the basis for billing reports and views.

Chapter 18. Aging Circulations 115
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

currently grocery bills are ignored and not aged.

Chapter 18. Aging Circulations 116
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

Chapter 19. Purging holds
Similar to purging circulations one may wish to purge old (filled or canceled) hold information. This
feature adds a database function and settings for doing so.

Purged holds are moved to the action.aged_hold_request table with patron identifying information
scrubbed, much like circulations are moved to action.aged_circulation.

The settings allow for a default retention age as well as distinct retention ages for holds filled, holds
canceled, and holds canceled by specific cancel causes. The most specific one wins unless a patron
is retaining their hold history. In the latter case the patron’s holds are retained either way.

Note that the function still needs to be called, which could be set up as a cron job or done more
manually, say after statistics collection. You can use the purge_holds.srfsh script to purge holds
from cron.

Chapter 19. Purging holds 117

Chapter 20. Purge User Activity
User activity types are now set to transient by default for new Evergreen installs. This means only
the most recent activity entry per user per activity type is retained in the database.

Use case

Setting more user activity types collects less patron data, which helps protect patron privacy.
Additionally, the actor.usr_activity table gets really big really fast if all event types are non-
transient.

This change does not affect existing activity types, which were set to non-transient by default. To
make an activity type transient, modify the Transient field of the desired type in the staff client
under Admin → Server Administration → User Activity Types.

Setting an activity type to transient means data for a given user will be cleaned up automatically
if and when the user performs the activity in question. However, administrators can also force an
activity cleanup via SQL. This is useful for ensuring that all old activity data is deleted and for
controlling when the cleanup occurs, which may be useful on very large actor.usr_activity tables.

To force clean all activity types:
SELECT actor.purge_usr_activity_by_type(etype.id)
 FROM config.usr_activity_type etype;

This could take hours to run on a very large actor.usr_activity table.

Chapter 20. Purge User Activity 118

Part VIII. Backing up your Evergreen System

Table of Contents
21. Database backups ... 121

Creating logical database backups .. 121
Restoring from logical database backups ... 122
Creating physical database backups with support for point-in-time recovery ... 122
Creating a replicated database .. 123

Part VIII. Backing up your Evergreen System 120

Chapter 21. Database backups
Although it might seem pessimistic, spending some of your limited time preparing for disaster is
one of the best investments you can make for the long-term health of your Evergreen system. If
one of your servers crashes and burns, you want to be confident that you can get a working system
back in place — whether it is your database server that suffers, or an Evergreen application server.

At a minimum, you need to be able to recover your system’s data from your PostgreSQL database
server: patron information, circulation transactions, bibliographic records, and the like. If all else
fails, you can at least restore that data to a stock Evergreen system to enable your staff and
patrons to find and circulate materials while you work on restoring your local customizations such
as branding, colors, or additional functionality. This section describes how to back up your data so
that you or a colleague can help you recover from various disaster scenarios.

Creating logical database backups
The simplest method to back up your PostgreSQL data is to use the pg_dump utility to create a logical
backup of your database. Logical backups have the advantage of taking up minimal space, as the
indexes derived from the data are not part of the backup. For example, an Evergreen database
with 2.25 million records and 3 years of transactions that takes over 120 GB on disk creates just a
7.0 GB compressed backup file. The drawback to this method is that you can only recover the data
at the exact point in time at which the backup began; any updates, additions, or deletions of your
data since the backup began will not be captured. In addition, when you restore a logical backup,
the database server has to recreate all of the indexes—so it can take several hours to restore a
logical backup of that 2.25 million record Evergreen database.

As the effort and server space required for logical database backups are minimal, your first step
towards preparing for disaster should be to automate regular logical database backups. You should
also ensure that the backups are stored in a different physical location, so that if a flood or other
disaster strikes your primary server room, you will not lose your logical backup at the same time.

To create a logical dump of your PostgreSQL database:

1. Issue the command to back up your database: pg_dump -Fc <database-name> > <backup-
filename>. If you are not running the command as the postgres user on the database server
itself, you may need to include options such as -U <user-name> and -h <hostname> to connect
to the database server. You can use a newer version of the PostgreSQL to run pg_dump against
an older version of PostgreSQL if your client and server operating systems differ. The -Fc option
specifies the "custom" format: a compressed format that gives you a great deal of flexibility
at restore time (for example, restoring only one table from the database instead of the entire
schema).

2. If you created the logical backup on the database server itself, copy it to a server located in a
different physical location.

You should establish a routine of nightly logical backups of your database, with older logical backups
being automatically deleted after a given interval.

Chapter 21. Database backups 121

Restoring from logical database backups
To increase your confidence in the safety of your data, you should regularly test your ability to
restore from a logical backup. Restoring a logical backup that you created using the custom format
requires the use of the pg_restore tool as follows:

1. On the server on which you plan to restore the logical backup, ensure that you have installed
PostgreSQL and the corresponding server package prerequisites. The Makefile.install
prerequisite installer than came with your version of Evergreen contains an installation target
that should satisfy these requirements. Refer to the installation documentation for more details.

2. As the postgres user, create a new database using the createdb command into which you will
restore the data. Base the new database on the template0 template database to enable the
combination of UTF8 encoding and C locale options, and specify the character type and collation
type as "C" using the --lc-ctype and --lc-collate parameters. For example, to create a
new database called "testrestore": createdb --template=template0 --lc-ctype=C --lc-
collate=C testrestore

3. As the postgres user, restore the logical backup into your newly created database using the
pg_restore command. You can use the -j parameter to use more CPU cores at a time to
make your recovery operation faster. If your target database is hosted on a different server,
you can use the -U <user-name> and -h <hostname> options to connect to that server. For
example, to restore the logical backup from a file named evergreen_20121212.dump into the
"testrestore" database on a system with 2 CPU cores: pg_restore -j 2 -d testrestore
evergreen_20171212.dump

Creating physical database backups with support
for point-in-time recovery
While logical database backups require very little space, they also have the disadvantage of taking
a great deal of time to restore for anything other than the smallest of Evergreen systems. Physical
database backups are little more than a copy of the database file system, meaning that the space
required for each physical backup will match the space used by your production database. However,
physical backups offer the great advantage of almost instantaneous recovery, because the indexes
already exist and simply need to be validated when you begin database recovery. Your backup
server should match the configuration of your master server as closely as possible including the
version of the operating system and PostgreSQL.

Like logical backups, physical backups also represent a snapshot of the data at the point in time
at which you began the backup. However, if you combine physical backups with write-ahead-log
(WAL) segment archiving, you can restore a version of your database that represents any point in
time between the time the backup began and the time at which the last WAL segment was archived,
a feature referred to as point-in-time recovery (PITR). PITR enables you to undo the damage that an
accidentally or deliberately harmful UPDATE or DELETE statement could inflict on your production
data, so while the recovery process can be complex, it provides fine-grained insurance for the
integrity of your data when you run upgrade scripts against your database, deploy new custom
functionality, or make global changes to your data.

Chapter 21. Database backups 122
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

To set up WAL archiving for your production Evergreen database, you need to modify your
PostgreSQL configuration (typically located on Debian and Ubuntu servers in /etc/postgresql/
<version>/postgresql.conf):

1. Change the value of archive_mode to on

2. Set the value of archive_command to a command that accepts the parameters %f (representing
the file name of the WAL segment) and %p (representing the complete path name for the WAL
segment, including the file name). You should copy the WAL segments to a remote file system
that can be read by the same server on which you plan to create your physical backups. For
example, if /data/wal represents a remote file system to which your database server can write,
a possible value of archive_command could be: test ! -f /data/wal/%f && cp %p /data/wal/
%f, which effectively tests to see if the destination file already exists, and if it does not, copies
the WAL segment to that location. This command can be and often is much more complex (for
example, using scp or rsync to transfer the file to the remote destination rather than relying on
a network share), but you can start with something simple.

Once you have modified your PostgreSQL configuration, you need to restart the PostgreSQL server
before the configuration changes will take hold: . Stop your OpenSRF services. . Restart your
PostgreSQL server. . Start your OpenSRF services and restart your Apache HTTPD server.

To create a physical backup of your production Evergreen database:

1. From your backup server, issue the pg_basebackup -x -D <data-destination-directory>
-U <user-name> -h <hostname> <database-name> command to create a physical backup of
database <database-name> on your backup server.

You should establish a process for creating regular physical backups at periodic intervals, bearing
in mind that the longer the interval between physical backups, the more WAL segments the backup
database will have to replay at recovery time to get back to the most recent changes to the
database. For example, to be able to relatively quickly restore the state of your database to any
point in time over the past four weeks, you might take physical backups at weekly intervals, keeping
the last four physical backups and all of the corresponding WAL segments.

Creating a replicated database
If you have a separate server that you can use to run a replica of your database, consider replicating
your database to that server. In the event that your primary database server suffers a hardware
failure, having a database replica gives you the ability to fail over to your database replica with
very little downtime and little or no data loss. You can also improve the performance of your overall
system by directing some read-only operations, such as reporting, to the database replica. In
this section, we describe how to replicate your database using PostgreSQL’s streaming replication
support.

You need to prepare your master PostgreSQL database server to support streaming replicas with
several configuration changes. The PostgreSQL configuration file is typically located on Debian and
Ubuntu servers at /etc/postgresql/<version>/postgresql.conf. The PostgreSQL host-based
authentication (pg_hba.conf) configuration file is typically located on Debian and Ubuntu servers at
/etc/postgresql/<version>/pg_hba.conf. Perform the following steps on your master database
server:

Chapter 21. Database backups 123
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

1. Turn on streaming replication support. In postgresql.conf on your master database server,
change max_wal_senders from the default value of 0 to the number of streaming replicas that
you need to support. Note that these connections count as physical connections for the sake of
the max_connections parameter, so you might need to increase that value at the same time.

2. Enable your streaming replica to endure brief network outages without having to rely on the
archived WAL segments to catch up to the master. In postgresql.conf on your production
database server, change wal_keep_segments to a value such as 32 or 64.

3. Increase the maximum number of log file segments between automatic WAL checkpoints. In
postgresql.conf on your production database server, change checkpoint_segments from its
default of 3 to a value such as 16 or 32. This improves the performance of your database at the
cost of additional disk space.

4. Create a database user for the specific purpose of replication. As the postgres user on the
production database server, issue the following commands, where replicant represents the name
of the new user:
createuser replicant
psql -d <database> ALTER ROLE replicant WITH REPLICATION;

5. Enable your replica database to connect to your master database server as a streaming replica.
In pg_hba.conf on your master database server, add a line to enable the database user replicant
to connect to the master database server from IP address 192.168.0.164:
host replication replicant 192.168.0.164/32 md5

6. To enable the changes to take effect, restart your PostgreSQL database server.

To avoid downtime, you can prepare your master database server for streaming replication at
any maintenance interval; then weeks or months later, when your replica server environment is
available, you can begin streaming replication. Once you are ready to set up the streaming replica,
perform the following steps on your replica server:

1. Ensure that the version of PostgreSQL on your replica server matches the version running on
your production server. A difference in the minor version (for example, 9.1.3 versus 9.1.5) will
not prevent streaming replication from working, but an exact match is recommended.

2. Create a physical backup of the master database server.

3. Add a recovery.conf file to your replica database configuration directory. This file contains the
information required to begin recovery once you start the replica database:
turn on standby mode, disabling writes to the database
standby_mode = 'on'
assumes WAL segments are available at network share /data/wal
restore_command = 'cp /data/wal/%f %p'
connect to the master database to being streaming replication
primary_conninfo = 'host=kochab.cs.uoguelph.ca user=replicant password=<password>

4. Start the PostgreSQL database server on your replica server. It should connect to the
master. If the physical backup did not take too long and you had a high enough value for
wal_keep_segments set on your master server, the replica should begin streaming replication.
Otherwise, it will replay WAL segments until it catches up enough to begin streaming replication.

Chapter 21. Database backups 124
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

5. Ensure that the streaming replication is working. Check the PostgreSQL logs on your replica
server and master server for any errors. Connect to the replica database as a regular database
user and check for recent changes that have been made to your master server.

Congratulations, you now have a streaming replica database that reflects the latest changes to
your Evergreen data! Combined with a routine of regular logical and physical database backups
and WAL segment archiving stored on a remote server, you have a significant insurance policy for
your system’s data in the event that disaster does strike.

Chapter 21. Database backups 125
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

Part IX. UX Administration

Table of Contents
22. TPac Configuration and Customization .. 129

Template toolkit documentation ... 129
TPAC URL .. 129
Perl modules used directly by TPAC .. 129
Default templates ... 129
Apache configuration files ... 129
TPAC CSS and media files ... 130
Mapping templates to URLs .. 130
How to override templates .. 130

Defining multiple layers of overrides .. 131
Changing some text in the TPAC ... 132
Troubleshooting ... 133

23. Designing your catalog .. 134
Configuring and customizing the public interface .. 134

Locating the default template files .. 134
Mapping templates to URLs .. 134
How to override template files ... 135
Configuring the custom templates directory in Apache’s eg.conf .. 135
Adjusting colors for your public interface .. 136
Adjusting fonts in your public interface ... 136
Media file locations in the public interface ... 136
Changing some text in the public interface ... 136
Adding translations to PO file .. 137
Adding and removing MARC fields from the record details display page .. 138

Setting the default physical location for your library environment .. 138
Setting a default language and adding optional languages ... 139

Updating translations in Evergreen using current translations from Launchpad .. 139
Change Date Format in Patron Account View .. 140
Including External Content in Your Public Interface .. 140

OpenLibrary .. 140
ChiliFresh ... 141
Content Café ... 141
Obalkyknih.cz ... 142
Google Analytics ... 143
NoveList .. 143
RefWorks ... 143
SFX OpenURL Resolver ... 143
Syndetic Solutions ... 143
Clear External/Added Content Cache .. 144
Configure a Custom Image for Missing Images .. 145

Including Locally Hosted Content in Your Public Interface ... 145
File Location and Format .. 145
Example ... 145

24. Designing the patron search experience .. 147
Editing the formats select box options in the search interface .. 147
Adding and removing search fields in advanced search .. 148
Changing the display of facets and facet groups .. 148
Facilitating search scope changes ... 149
Sitemap generator .. 149

Running the sitemap generator ... 149
Sitemap details .. 150

Part IX. UX Administration 127

Scheduling .. 150
Troubleshooting TPAC errors .. 150

25. Ebook API integration ... 151
Ebook API service configuration .. 151
OverDrive API integration .. 151
OneClickdigital API integration ... 152
Additional configuration ... 153

26. Managing audio alerts ... 154
Globally silencing sounds .. 154
Self-check interface .. 154

Part IX. UX Administration 128
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

Chapter 22. TPac Configuration and
Customization

Template toolkit documentation
For more general information about template toolkit see: official documentation.

The purpose of this chapter is to focus on the Evergreen-specific uses of Template Toolkit (TT) in
the OPAC.

TPAC URL
The URL for the TPAC on a default Evergreen system is http://localhost/eg/opac/home (adjust
localhost to match your hostname or IP address, naturally!)

Perl modules used directly by TPAC
• Open-ILS/src/perlmods/lib/OpenILS/WWW/EGCatLoader.pm

• Open-ILS/src/perlmods/lib/OpenILS/WWW/EGCatLoader/Account.pm

• Open-ILS/src/perlmods/lib/OpenILS/WWW/EGCatLoader/Container.pm

• Open-ILS/src/perlmods/lib/OpenILS/WWW/EGCatLoader/Record.pm

• Open-ILS/src/perlmods/lib/OpenILS/WWW/EGCatLoader/Search.pm

• Open-ILS/src/perlmods/lib/OpenILS/WWW/EGCatLoader/Util.pm

Default templates
The source template files are found in Open-ILS/src/templates/opac.

These template files are installed in /openils/var/templates/opac.

NOTE. You should generally avoid touching the installed default template files, unless you are
contributing changes that you want Evergreen to adopt as a new default. Even then, while you
are developing your changes, consider using template overrides rather than touching the installed
templates until you are ready to commit the changes to a branch. See below for information on
template overrides.

Apache configuration files
The base Evergreen configuration file on Debian-based systems can be found in /etc/apache2/
sites-enabled/eg.conf. This file defines the basic virtual host configuration for Evergreen

Chapter 22. TPac Configuration and Customization 129

http://template-toolkit.org/docs/index.html
http://localhost/eg/opac/home

(hostnames and ports), then single-sources the bulk of the configuration for each virtual host by
including /etc/apache2/eg_vhost.conf.

TPAC CSS and media files
The CSS files used by the default TPAC templates are stored in the repo in Open-ILS/web/css/
skin/default/opac/ and installed in /openils/var/web/css/skin/default/opac/.

The media files—mostly PNG images—used by the default TPAC templates are stored in the repo
in Open-ILS/web/images/ and installed in /openils/var/web/images/.

Mapping templates to URLs
The mapping for templates to URLs is straightforward. Following are a few examples, where
<templates> is a placeholder for one or more directories that will be searched for a match:

• http://localhost/eg/opac/home ⇒ /openils/var/<templates>/opac/home.tt2

• http://localhost/eg/opac/advanced ⇒ /openils/var/<templates>/opac/advanced.tt2

• http://localhost/eg/opac/results ⇒ /openils/var/<templates>/opac/results.tt2

The template files themselves can process, be wrapped by, or include other template files. For
example, the home.tt2 template currently involves a number of other template files to generate
a single HTML file:

Example Template Toolkit file: opac/home.tt2.
[% PROCESS "opac/parts/header.tt2";
 WRAPPER "opac/parts/base.tt2";
 INCLUDE "opac/parts/topnav.tt2";
 ctx.page_title = l("Home") %]
 <div id="search-wrapper">
 [% INCLUDE "opac/parts/searchbar.tt2" %]
 </div>
 <div id="content-wrapper">
 <div id="main-content-home">
 <div class="common-full-pad"></div>
 [% INCLUDE "opac/parts/homesearch.tt2" %]
 <div class="common-full-pad"></div>
 </div>
 </div>
[% END %]

We will dissect this example in some more detail later, but the important thing to note is that the
file references are relative to the top of the template directory.

How to override templates
Overrides for templates go in a directory that parallels the structure of the default templates
directory. The overrides then get pulled in via the Apache configuration.

Chapter 22. TPac Configuration and Customization 130
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

In the following example, we demonstrate how to create a file that overrides the default "Advanced
search page" (advanced.tt2) by adding a new templates directory and editing the new file in that
directory.

Adding an override for the Advanced search page (example).
bash$ mkdir -p /openils/var/templates_custom/opac
bash$ cp /openils/var/templates/opac/advanced.tt2 \
 /openils/var/templates_custom/opac/.
bash$ vim /openils/var/templates_custom/opac/advanced.tt2

We now need to teach Apache about the new templates directory. Open eg.conf and add the
following <Location /eg> element to each of the <VirtualHost> elements in which you want to
include the overrides. The default Evergreen configuration includes a VirtualHost directive for
port 80 (HTTP) and another one for port 443 (HTTPS); you probably want to edit both, unless you
want the HTTP user experience to be different from the HTTPS user experience.

Configuring the custom templates directory in Apache’s eg.conf.
<VirtualHost *:80>
 # <snip>

 # - absorb the shared virtual host settings
 Include eg_vhost.conf
 <Location /eg>
 PerlAddVar OILSWebTemplatePath "/openils/var/templates_algoma"
 </Location>

 # <snip>
</VirtualHost>

Finally, reload the Apache configuration to pick up the changes:

Reloading the Apache configuration.
bash# /etc/init.d/apache2 reload

You should now be able to see your change at http://localhost/eg/opac/advanced

Defining multiple layers of overrides
You can define multiple layers of overrides, so if you want every library in your consortium to have
the same basic customizations, and then apply library-specific customizations, you can define two
template directories for each library.

In the following example, we define the template_CONS directory as the set of customizations to
apply to all libraries, and template_BR# as the set of customizations to apply to library BR1 and BR2.

As the consortial customizations apply to all libraries, we can add the extra template directory
directly to eg_vhost.conf:

Apache configuration for all libraries (eg_vhost.conf).
Templates will be loaded from the following paths in reverse order.
PerlAddVar OILSWebTemplatePath "/openils/var/templates"
PerlAddVar OILSWebTemplatePath "/openils/var/templates_CONS"

Chapter 22. TPac Configuration and Customization 131
Report errors in this documentation using Launchpad.

http://localhost/eg/opac/advanced
https://bugs.launchpad.net/evergreen/+filebug

Then we define a virtual host for each library to add the second layer of customized templates on
a per-library basis. Note that for the sake of brevity we only show the configuration for port 80.

Apache configuration for each virtual host (eg.conf).
<VirtualHost *:80>
 ServerName br1.concat.ca
 DocumentRoot /openils/var/web/
 DirectoryIndex index.html index.xhtml
 Include eg_vhost.conf
 <Location /eg>
 PerlAddVar OILSWebTemplatePath "/openils/var/templates_BR1"
 </Location>
</VirtualHost>

<VirtualHost *:80>
 ServerName br2.concat.ca
 DocumentRoot /openils/var/web/
 DirectoryIndex index.html index.xhtml
 Include eg_vhost.conf
 <Location /eg>
 PerlAddVar OILSWebTemplatePath "/openils/var/templates_BR2"
 </Location>
</VirtualHost>

Changing some text in the TPAC
Out of the box, the TPAC includes a number of placeholder text and links. For example, there is a
set of links cleverly named Link 1, Link 2, and so on in the header and footer of every page in the
TPAC. Let’s customize that for our templates_BR1 skin.

To begin with, we need to find the page(s) that contain the text in question. The simplest way to
do that is with the handy utility ack, which is much like grep but with built-in recursion and other
tricks. On Debian-based systems, the command is ack-grep as ack conflicts with an existing utility.
In the following example, we search for files that contain the text "Link 1":

Searching for text matching "Link 1".
bash$ ack-grep "Link 1" /openils/var/templates/opac
/openils/var/templates/opac/parts/topnav_links.tt2
4: [% l('Link 1') %]

Next, we copy the file into our overrides directory and edit it with vim:

Copying the links file into the overrides directory.
bash$ cp /openils/var/templates/opac/parts/topnav_links.tt2 \
 /openils/var/templates_BR1/opac/parts/topnav_links.tt2
bash$ vim /openils/var/templates_BR1/opac/parts/topnav_links.tt2

Finally, we edit the link text in opac/parts/header.tt2.

Content of the opac/parts/header.tt2 file.
<div id="gold-links-holder">
 <div id="gold-links">
 <div id="header-links">
 [% l('Link 1') %]
 [% l('Link 2') %]
 [% l('Link 3') %]

Chapter 22. TPac Configuration and Customization 132
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

 [% l('Link 4') %]
 [% l('Link 5') %]
 </div>
 </div>
</div>

For the most part, the page looks like regular HTML, but note the [%_(" ")%] that surrounds the
text of each link. The [% ... %] signifies a TT block, which can contain one or more TT processing
instructions. l(" ... "); is a function that marks text for localization (translation); a separate
process can subsequently extract localized text as GNU gettext-formatted PO files.

NOTE. As Evergreen supports multiple languages, any customizations to Evergreen’s default text
must use the localization function. Also, note that the localization function supports placeholders
such as [_1], [_2] in the text; these are replaced by the contents of variables passed as extra
arguments to the l() function.

Once we have edited the link and link text to our satisfaction, we can load the page in our Web
browser and see the live changes immediately (assuming we are looking at the BR1 overrides, of
course).

Troubleshooting
If there is a problem such as a TT syntax error, it generally shows up as a an ugly server failure
page. If you check the Apache error logs, you will probably find some solid clues about the reason
for the failure. For example, in the following example the error message identifies the file in which
the problem occurred as well as the relevant line numbers:

Example error message in Apache error logs.
bash# grep "template error" /var/log/apache2/error_log
[Tue Dec 06 02:12:09 2011] [warn] [client 127.0.0.1] egweb: template error:
 file error - parse error - opac/parts/record/summary.tt2 line 112-121:
 unexpected token (!=)\n [% last_cn = 0;\n FOR copy_info IN
 ctx.copies;\n callnum = copy_info.call_number_label;\n

Chapter 22. TPac Configuration and Customization 133
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

Chapter 23. Designing your catalog
When people want to find things in your Evergreen system, they will check the catalog. In
Evergreen, the catalog is made available through a web interface, called the OPAC (Online Public
Access Catalog). In the latest versions of the Evergreen system, the OPAC is built on a set of
programming modules called the Template Toolkit. You will see the OPAC sometimes referred to
as the TPAC.

In this chapter, we’ll show you how to customize the OPAC, change it from its default configuration,
and make it your own.

Configuring and customizing the public interface
The public interface is referred to as the TPAC or Template Toolkit (TT) within the Evergreen
community. The template toolkit system allows you to customize the look and feel of your OPAC
by editing the template pages (.tt2) files as well as the associated style sheets.

Locating the default template files

The default URL for the TPAC on a default Evergreen system is http://localhost/eg/opac/home
(adjust localhost to match your hostname or IP address).

The default template file is installed in /openils/var/templates/opac.

You should generally avoid touching the installed default template files, unless you are contributing
changes for Evergreen to adopt as a new default. Even then, while you are developing your changes,
consider using template overrides rather than touching the installed templates until you are ready
to commit the changes to a branch. See below for information on template overrides.

Mapping templates to URLs

The mapping for templates to URLs is straightforward. Following are a few examples, where
<templates> is a placeholder for one or more directories that will be searched for a match:

• http://localhost/eg/opac/home ⇒ /openils/var/<templates>/opac/home.tt2

• http://localhost/eg/opac/advanced ⇒ /openils/var/<templates>/opac/advanced.tt2

• http://localhost/eg/opac/results ⇒ /openils/var/<templates>/opac/results.tt2

The template files themselves can process, be wrapped by, or include other template files. For
example, the home.tt2 template currently involves a number of other template files to generate
a single HTML file.

Example Template Toolkit file: opac/home.tt2.
[% PROCESS "opac/parts/header.tt2";

Chapter 23. Designing your catalog 134

 WRAPPER "opac/parts/base.tt2";
 INCLUDE "opac/parts/topnav.tt2";
 ctx.page_title = l("Home") %]
 <div id="search-wrapper">
 [% INCLUDE "opac/parts/searchbar.tt2" %]
 </div>
 <div id="content-wrapper">
 <div id="main-content-home">
 <div class="common-full-pad"></div>
 [% INCLUDE "opac/parts/homesearch.tt2" %]
 <div class="common-full-pad"></div>
 </div>
 </div>
[% END %]

Note that file references are relative to the top of the template directory.

How to override template files

Overrides for template files or TPAC pages go in a directory that parallels the structure of the default
templates directory. The overrides then get pulled in via the Apache configuration.

The following example demonstrates how to create a file that overrides the default "Advanced
search page" (advanced.tt2) by adding a new templates_custom directory and editing the new file
in that directory.
bash$ mkdir -p /openils/var/templates_custom/opac
bash$ cp /openils/var/templates/opac/advanced.tt2 \
 /openils/var/templates_custom/opac/.
bash$ vim /openils/var/templates_custom/opac/advanced.tt2

Configuring the custom templates directory in Apache’s
eg.conf

You now need to teach Apache about the new custom template directory. Edit /etc/apache2/sites-
available/eg.conf and add the following <Location /eg> element to each of the <VirtualHost>
elements in which you want to include the overrides. The default Evergreen configuration includes
a VirtualHost directive for port 80 (HTTP) and another one for port 443 (HTTPS); you probably
want to edit both, unless you want the HTTP user experience to be different from the HTTPS user
experience.
<VirtualHost *:80>
 # <snip>

 # - absorb the shared virtual host settings
 Include eg_vhost.conf
 <Location /eg>
 PerlAddVar OILSWebTemplatePath "/openils/var/templates_custom"
 </Location>

 # <snip>
</VirtualHost>

Finally, reload the Apache configuration to pick up the changes. You should now be able to see your
change at http://localhost/eg/opac/advanced where localhost is the hostname of your Evergreen
server.

Chapter 23. Designing your catalog 135
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

Adjusting colors for your public interface
You may adjust the colors of your public interface by editing the colors.tt2 file. The location of this
file is in /openils/var/templates/opac/parts/css/colors.tt2. When you customize the colors of your
public interface, remember to create a custom file in your custom template folder and edit the
custom file and not the file located in you default template.

Adjusting fonts in your public interface
Font sizes can be changed in the colors.tt2 file located in /openils/var/templates/opac/parts/css/.
Again, create and edit a custom template version and not the file in the default template.

Other aspects of fonts such as the default font family can be adjusted in /openils/var/templates/
opac/css/style.css.tt2.

Media file locations in the public interface
The media files (mostly PNG images) used by the default TPAC templates are stored in the
repository in Open-ILS/web/images/ and installed in /openils/var/web/images/.

Changing some text in the public interface
Out of the box, TPAC includes a number of placeholder text and links. For example, there is a set
of links cleverly named Link 1, Link 2, and so on in the header and footer of every page in TPAC.
Here is how to customize that for a custom templates skin.

To begin with, find the page(s) that contain the text in question. The simplest way to do that is with
the grep -s command. In the following example, search for files that contain the text "Link 1":
bash$ grep -r "Link 1" /openils/var/templates/opac
/openils/var/templates/opac/parts/topnav_links.tt2
4: [% l('Link 1') %]

Next, copy the file into our overrides directory and edit it with vim.

Copying the links file into the overrides directory.
bash$ cp /openils/var/templates/opac/parts/topnav_links.tt2 \
/openils/var/templates_custom/opac/parts/topnav_links.tt2
bash$ vim /openils/var/templates_custom/opac/parts/topnav_links.tt2

Finally, edit the link text in opac/parts/header.tt2. Content of the opac/parts/header.tt2 file.
<div id="gold-links-holder">
 <div id="gold-links">
 <div id="header-links">
 [% l('Link 1') %]
 [% l('Link 2') %]
 [% l('Link 3') %]
 [% l('Link 4') %]
 [% l('Link 5') %]
 </div>
 </div>
</div>

Chapter 23. Designing your catalog 136
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

For the most part, the page looks like regular HTML, but note the [%_(" ")%] that surrounds the
text of each link. The [% ... %] signifies a TT block, which can contain one or more TT processing
instructions. l(" ... "); is a function that marks text for localization (translation); a separate
process can subsequently extract localized text as GNU gettext-formatted PO (Portable Object)
files.

As Evergreen supports multiple languages, any customization to Evergreen’s default text must use
the localization function. Also, note that the localization function supports placeholders such as
[_1], [_2] in the text; these are replaced by the contents of variables passed as extra arguments
to the l() function.

Once the link and link text has been edited to your satisfaction, load the page in a Web browser
and see the live changes immediately.

Adding translations to PO file
After you have added custom text in translatable form to a TT2 template, you need to add the
custom strings and its translations to the PO file containing the translations. Evergreen PO files are
stored in /openils/var/template/data/locale/

The PO file consists of pairs of the text extracted from the code: Message ID denoted as msgid and
message string denoted as msgstr. When adding the custom string to PO file:

• The line with English expressions must start with msgid. The English term must be enclosed in
double apostrophes.

• The line with translation start with /msgstr/. The translation to local language must be and
enclosed in enclosed in double apostrophes.

• It is recommended to add a note in which template and on which line the particular string is
located. The lines with notes must be marked as comments i.e., start with number sign (#)

Example:

The lines below contains the custom strings manually added to the catalog

#: ../../Open-ILS/src/custom_templates/opac/parts/topnav_links.tt2:1
msgid "Union Catalog of the Czech Republic"
msgstr "Souborný katalog České republiky"

#: ../../Open-ILS/src/custom_templates/opac/parts/topnav_links.tt2:1
msgid "Uniform Information Gateway "
msgstr "Jednotná informační brána"

It is good practice to save backup copy of the original PO file before changing it.

After making changes, restart Apache to make the changes take effect. As root run the command:
service apache2 restart

Chapter 23. Designing your catalog 137
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

Adding and removing MARC fields from the record details
display page
It is possible to add and remove the MARC fields and subfields displayed in the record details page.
In order to add MARC fields to be displayed on the details page of a record, you will need to map
the MARC code to variables in the /openils/var/templates/opac/parts/misc_util.tt2 file.

For example, to map the template variable args.pubdates to the date of publication MARC field
260, subfield c, add these lines to misc_util.tt2:
args.pubdates = [];
FOR sub IN xml.findnodes('//*[@tag="260"]/*[@code="c"]');
 args.pubdates.push(sub.textContent);
END;
args.pubdate = (args.pubdates.size) ? args.pubdates.0 : ''

You will then need to edit the /openils/var/templates/opac/parts/record/summary.tt2 file in order
to get the template variable for the MARC field to display.

For example, to display the date of publication code you created in the misc_util.tt2 file, add these
lines:
[% IF attrs.pubdate; %]
 [% attrs.pubdate | html; %]
[% END; %]

You can add any MARC field to your record details page. Moreover, this approach can also be used
to display MARC fields in other pages, such as your results page.

Using bibliographic source variables

For bibliographic records, there is a "bib source" that can be associated with every record. This
source and its ID are available as record attributes called bib_source.source and bib_source.id.
These variables do not present themselves in the catalog display by default.

Example use case

In this example, a library imports e-resource records from a third party and uses the bib source
to indicate where the records came from. Patrons can place holds on these titles, but they
must be placed via the vendor website, not in Evergreen. By exposing the bib source, the
library can alter the Place Hold link for these records to point at the vendor website.

Setting the default physical location for your
library environment
physical_loc is an Apache environment variable that sets the default physical location, used for
setting search scopes and determining the order in which copies should be sorted. This variable
is set in /etc/apache2/sites-available/eg.conf. The following example demonstrates the default
physical location being set to library ID 104:

Chapter 23. Designing your catalog 138
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

SetEnv physical_loc 104

Setting a default language and adding optional
languages
OILSWebLocale adds support for a specific language. Add this variable to the Virtual Host section
in /etc/apache2/eg_vhost.conf.

OILSWebDefaultLocale specifies which locale to display when a user lands on a page in TPAC and
has not chosen a different locale from the TPAC locale picker. The following example shows the
fr_ca locale being added to the locale picker and being set as the default locale:
PerlAddVar OILSWebLocale "fr_ca"
PerlAddVar OILSWebLocale "/openils/var/data/locale/opac/fr-CA.po"
PerlAddVar OILSWebDefaultLocale "fr-CA"

Below is a table of the currently supported languages packaged with Evergreen:

Language Code PO file
Arabic - Jordan ar_jo /openils/var/data/locale/opac/ar-

JO.po
Armenian hy_am /openils/var/data/locale/opac/hy-

AM.po
Czech cs_cz /openils/var/data/locale/opac/cs-

CZ.po
English - Canada en_ca /openils/var/data/locale/opac/en-

CA.po
English - Great Britain en_gb /openils/var/data/locale/opac/en-

GB.po
*English - United States en_us not applicable
French - Canada fr_ca /openils/var/data/locale/opac/fr-

CA.po
Portuguese - Brazil pt_br /openils/var/data/locale/opac/pt-

BR.po
Spanish es_es /openils/var/data/locale/opac/es-

ES.po

*American English is built into Evergreen so you do not need to set up this language and there
are no PO files.

Updating translations in Evergreen using current
translations from Launchpad
Due to Evergreen release workflow/schedule, some language strings may already have been
translated in Launchpad, but are not yet packaged with Evergreen. In such cases, it is possible to
manually replace the PO file in Evergreen with an up-to-date PO file downloaded from Launchpad.

1. Visit the Evergreen translation site in Launchpad

Chapter 23. Designing your catalog 139
Report errors in this documentation using Launchpad.

https://translations.launchpad.net/evergreen
https://bugs.launchpad.net/evergreen/+filebug

2. Select required language (e.g. Czech or Spanish)

3. Open the tpac template and then select option Download translation. Note: to be able to
download the translation file you need to be logged in to Launchpad.

4. Select PO format and submit the request for download button. You can also request for
download of all existing templates and languages at once, see https://translations.launchpad.net/
evergreen/master/+export. The download link will be sent You to email address provided.

5. Download the file and name it according to the language used (e.g., cs-CZ.po for Czech or es-
ES.po for Spanish)

6. Copy the downloaded file to /openils/var/template/data/locale. It is a good practice to backup
the original PO file before.

7. Be sure that the desired language is set as default, using the Default language procedures.

Analogously, to update the web staff client translations, download the translation template webstaff
and copy it to openils/var/template/data/locale/staff.

Changes require web server reload to take effect. As root run the command
service apache2 restart

Change Date Format in Patron Account View
Libraries with same-day circulations may want their patrons to be able to view the due time as
well as due date when they log in to their OPAC account. To accomplish this, go to opac/myopac/
circs.tt2. Find the line that reads:
[% date.format(due_date, DATE_FORMAT) %]

Replace it with:
[% date.format(due_date, '%D %I:%M %p') %]

Including External Content in Your Public
Interface
The public interface allows you to include external services and content in your public interface.
These can include book cover images, user reviews, table of contents, summaries, author notes,
annotations, user suggestions, series information among other services. Some of these services
are free while others require a subscription.

The following are some of the external content services which you can configure in Evergreen.

OpenLibrary
The default install of Evergreen includes OpenLibrary book covers. The settings for this are
controlled by the <added_content> section of /openils/conf/opensrf.xml. Here are the key elements
of this configuration:

Chapter 23. Designing your catalog 140
Report errors in this documentation using Launchpad.

https://translations.launchpad.net/evergreen/master/+export
https://translations.launchpad.net/evergreen/master/+export
https://bugs.launchpad.net/evergreen/+filebug

<module>OpenILS::WWW::AddedContent::OpenLibrary</module>

This section calls the OpenLibrary perl module. If you wish to link to a different book cover service
other than OpenLibrary, you must refer to the location of the corresponding Perl module. You will
also need to change other settings accordingly.
<timeout>1</timeout>

Max number of seconds to wait for an added content request to return data. Data not returned
within the timeout is considered a failure.
<retry_timeout>600</retry_timeout>

This setting is the amount of time to wait before we try again.
<max_errors>15</max_errors>

Maximum number of consecutive lookup errors a given process can have before added content
lookups are disabled for everyone. To adjust the site of the cover image on the record details page
edit the config.tt2 file and change the value of the record.summary.jacket_size. The default value
is "medium" and the available options are "small", "medium" and "large."

ChiliFresh
ChiliFresh is a subscription-based service which allows book covers, reviews and social interaction
of patrons to appear in your catalog. To activate ChiliFresh, you will need to open the Apache
configuration file /etc/apache2/eg_vhost.conf and edit several lines:

1. Uncomment (remove the "#" at the beginning of the line) and add your ChiliFresh account
number:

#SetEnv OILS_CHILIFRESH_ACCOUNT

1. Uncomment this line and add your ChiliFresh Profile:

#SetEnv OILS_CHILIFRESH_PROFILE

Uncomment the line indicating the location of the Evergreen JavaScript for ChiliFresh:
#SetEnv OILS_CHILIFRESH_URL http://chilifresh.com/on-site /js/evergreen.js

1. Uncomment the line indicating the secure URL for the Evergreen JavaScript :

#SetEnv OILS_CHILIFRESH_HTTPS_URL https://secure.chilifresh.com/on-site/js/evergreen.js

Content Café
Content Café is a subscription-based service that can add jacket images, reviews, summaries,
tables of contents and book details to your records.

In order to activate Content Café, edit the /openils/conf/opensrf.xml file and change the <module>
element to point to the ContentCafe Perl Module:
<module>OpenILS::WWW::AddedContent::ContentCafe</module>

To adjust settings for Content Café, edit a couple of fields with the <ContentCafe> Section of /
openils/conf/opensrf.xml.

Chapter 23. Designing your catalog 141
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

Edit the userid and password elements to match the user id and password for your Content Café
account.

This provider retrieves content based on ISBN or UPC, with a default preference for ISBNs. If you
wish for UPCs to be preferred, or wish one of the two identifier types to not be considered at all,
you can change the "identifier_order" option in opensrf.xml. When the option is present, only the
identifier(s) listed will be sent.

Obalkyknih.cz

Setting up Obalkyknih.cz account

If your library wishes to use added content provided by Obalkyknih.cz, a service based in the
Czech Republic, you have to create an Obalkyknih.cz account. Please note that the interface is only
available in Czech. After logging in your Obalkyknih.cz account, you have to add your IP address
and Evergreen server address to your account settings. (In case each library uses an address of
its own, all of these addresses have to be added.)

Enabling Obalkyknih.cz in Evergreen

Set obalkyknih_cz.enabled to true in /openils/var/templates/opac/parts/config.tt2:
obalkyknih_cz.enabled = 'true';

Enable added content from Obalkyknih.cz in /openils/conf/opensrf.xml configuration file (and – at
the same time – disable added content from Open Library, i.e., Evergreen’s default added content
provider):
<!-- <module>OpenILS::WWW::AddedContent::OpenLibrary</module> -->
<module>OpenILS::WWW::AddedContent::ObalkyKnih</module>

Using default settings for Obalkyknih.cz means all types of added content from Obalkyknih.cz are
visible in your online catalog. If the module is enabled, book covers are always displayed. Other
types of added content (summaries, ratings or tables of contents) can be:

• switched off using false option,

• switched on again using true option.

The following types of added content are used:

• summary (or annotation)

• tocPDF (table of contents available as image)

• tocText (table of contents available as text)

• review (user reviews)

An example of how to switch off summaries:
<summary>false</summary>

Chapter 23. Designing your catalog 142
Report errors in this documentation using Launchpad.

http://obalkyknih.cz/signup
https://bugs.launchpad.net/evergreen/+filebug

Google Analytics
Google Analytics is a free service to collect statistics for your Evergreen site. Statistic tracking is
disabled by default through the Evergreen client software when library staff use your site within
the client, but active when anyone uses the site without the client. This was a preventive measure
to reduce the potential risks for leaking patron information. In order to use Google Analytics you
will first need to set up the service from the Google Analytics website at http://www.google.com/
analytics/. To activate Google Analytics you will need to edit config.tt2 in your template. To
enable the service set the value of google_analytics.enabled to true and change the value of
google_analytics.code to be the code in your Google Analytics account.

NoveList
Novelist is a subscription-based service providing reviews and recommendation for books in you
catalog. To activate your Novelist service in Evergreen, open the Apache configuration file /etc/
apache2/eg_vhost.conf and edit the line:
#SetEnv OILS_NOVELIST_URL

You should use the URL provided by NoveList.

RefWorks
RefWorks is a subscription-based online bibliographic management tool. If you have a RefWorks
subscription, you can activate RefWorks in Evergreen by editing the config.tt2 file located in your
template directory. You will need to set the ctx.refworks.enabled value to true. You may also set
the RefWorks URL by changing the ctx.refworks.url setting on the same file.

SFX OpenURL Resolver
An OpenURL resolver allows you to find electronic resources and pull them into your catalog based
on the ISBN or ISSN of the item. In order to use the SFX OpenURL resolver, you will need to subscribe
to the Ex Libris SFX service. To activate the service in Evergreen edit the config.tt2 file in your
template. Enable the resolver by changing the value of openurl.enabled to true and change the
openurl.baseurl setting to point to the URL of your OpenURL resolver.

Syndetic Solutions
Syndetic Solutions is a subscription service providing book covers and other data for items in
your catalog. In order to activate Syndetic, edit the /openils/conf/opensrf.xml file and change the
<module> element to point to the Syndetic Perl Module:
<module>OpenILS::WWW::AddedContent::Syndetic</module>

You will also need to edit the <userid> element to be the user id provided to you by Syndetic.

Then, you will need to uncomment and edit the <base_url> element so that it points to the Syndetic
service:
<base_url>http://syndetics.com/index.aspx</base_url>

For changes to be activated for your public interface you will need to restart Evergreen and Apache.

Chapter 23. Designing your catalog 143
Report errors in this documentation using Launchpad.

http://www.google.com/analytics/
http://www.google.com/analytics/
https://bugs.launchpad.net/evergreen/+filebug

The Syndetic Solutions provider retrieves images based on the following identifiers found in
bibliographic records:

• ISBN

• UPC

• ISSN

Clear External/Added Content Cache
On the catalog’s record summary page, there is a link for staff that will forcibly clear the cache of
the Added Content for that record. This is helpful for when the Added Content retrieved the wrong
cover jacket art, summary, etc. and caches the wrong result.

Once clicked, there is a pop up that will display what was cleared from the cache.

Chapter 23. Designing your catalog 144
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

You will need to reload the record in the staff client to obtain the new images from your Added
Content Supplier.

Configure a Custom Image for Missing Images
You can configure a "no image" image other than the standard 1-pixel blank image. The example
eg_vhost.conf file provides examples in the comments. Note: Evergreen does not provide default
images for these.

Including Locally Hosted Content in Your Public
Interface
It is also possible to show added content that has been generated locally by placing the content in
a specific spot on the web server. It is possible to have local book jackets, reviews, TOC, excerpts
or annotations.

File Location and Format
By default the files will need to be placed in directories under /openils/var/web/opac/extras/ac/ on
the server(s) that run Apache.

The files need to be in specific folders depending on the format of the added content. Local Content
can only be looked up based on the record ID at this time.

URL Format: http://catalog/opac/extras/ac/{type}/{format}/r/{recordid}

• type is one of jacket, reviews, toc, excerpt or anotes.

• format is type dependent:

• for jacket, one of small, medium or large

• others, one of html, xml or json … html is the default for non-image added content

• recordid is the bibliographic record id (bre.id).

Example
If you have some equipment that you are circulating such as a laptop or eBook reader and you
want to add an image of the equipment that will show up in the catalog.

If you are adding jacket art for a traditional type of media (book, CD, DVD) consider adding the
jacket art to the http://openlibrary.org project instead of hosting it locally. This would allow other
libraries to benefit from your work.

Chapter 23. Designing your catalog 145
Report errors in this documentation using Launchpad.

http://openlibrary.org
https://bugs.launchpad.net/evergreen/+filebug

Make note of the Record ID of the bib record. You can find this by looking at the URL of the bib in
the catalog. http://catalog/eg/opac/record/123, 123 is the record ID. These images will only show
up for one specific record.

Create 3 different sized versions of the image in png or jpg format.

• Small - 80px x 80px - named 123-s.jpg or 123-s.png - This is displayed in the browse display.

• Medium - 240px x 240px - named 123-m.jpg or 123-m.png - This is displayed on the summary
page.

• Large - 400px x 399px - named 123-l.jpg or 123-l.png - This is displayed if the summary page
image is clicked on.

The image dimensions are up to you, use what looks good in your catalog.

Next, upload the images to the evergreen server(s) that run apache, and move/rename the files to
the following locations/name. You will need to create directories that are missing.

• Small - Move the file 123-s.jpg to /openils/var/web/opac/extras/ac/jacket/small/r/123

• Medium - Move the file 123-m.jpg to /openils/var/web/opac/extras/ac/jacket/medium/r/123.

• Large - Move the file 123-l.jpg to /openils/var/web/opac/extras/ac/jacket/large/r/123.

The system doesn’t need the file extension to know what kind of file it is.

Reload the bib record summary in the web catalog and your new image will display.

Chapter 23. Designing your catalog 146
Report errors in this documentation using Launchpad.

http://catalog/eg/opac/record/
https://bugs.launchpad.net/evergreen/+filebug

Chapter 24. Designing the patron search
experience

Editing the formats select box options in the
search interface
You may wish to remove, rename or organize the options in the formats select box. This can be
accomplished from the staff client.

1. From the staff client, navigate to Administration → Server Administration → Marc Coded Value
Maps

2. Select Type from the Record Attribute Type select box.

3. Double click on the format type you wish to edit.

To change the label for the type, enter a value in the Search Label field.

To move the option to a top list separated by a dashed line from the others, check the Is Simple
Selector check box.

To hide the type so that it does not appear in the search interface, uncheck the OPAC Visible
checkbox.

Changes will be immediate.

Chapter 24. Designing the patron search experience 147

Adding and removing search fields in advanced
search
It is possible to add and remove search fields on the advanced search page by editing the opac/
parts/config.tt2 file in your template directory. Look for this section of the file:
search.adv_config = [
 {adv_label => l("Item Type"), adv_attr => ["mattype", "item_type"]},
 {adv_label => l("Item Form"), adv_attr => "item_form"},
 {adv_label => l("Language"), adv_attr => "item_lang"},
 {adv_label => l("Audience"), adv_attr => ["audience_group", "audience"], adv_break => 1},
 {adv_label => l("Video Format"), adv_attr => "vr_format"},
 {adv_label => l("Bib Level"), adv_attr => "bib_level"},
 {adv_label => l("Literary Form"), adv_attr => "lit_form", adv_break => 1},
 {adv_label => l("Search Library"), adv_special => "lib_selector"},
 {adv_label => l("Publication Year"), adv_special => "pub_year"},
 {adv_label => l("Sort Results"), adv_special => "sort_selector"},
];

For example, if you delete the line:
{adv_label => l("Language"), adv_attr => "item_lang"},

the language field will no longer appear on your advanced search page. Changes will appear
immediately after you save your changes.

You can also add fields based on Search Facet Groups that you create in the staff client’s Local
Administration menu. This can be helpful if you want to simplify your patrons' experience by
presenting them with only certain limiters (e.g. the most commonly used languages in your area).
To do this,

1. Click Administration → Local Administration → Search Filter Groups.

2. Click New.

3. Enter descriptive values into the code and label fields. The owner needs to be set to your
consortium.

4. Once the Facet Group is created, click on the blue hyperlinked code value.

5. Click the New button to create the necessary values for your field.

6. Go to the opac/parts/config.tt2 file, and add a line like the following, where Our Library’s Field is
the name you’d like to be displayed next to your field, and facet_group_code is the code you’ve
added using the staff client.
 {adv_label => l("Our Library's Field"), adv_filter => "facet_group_code"},

Changing the display of facets and facet groups
Facets can be reordered on the search results page by editing the opac/parts/config.tt2 file in your
template directory.

Chapter 24. Designing the patron search experience 148
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

Edit the following section of config.tt2, changing the order of the facet categories according to
your needs:
facet.display = [
 {facet_class => 'author', facet_order => ['personal', 'corporate']},
 {facet_class => 'subject', facet_order => ['topic']},
 {facet_class => 'series', facet_order => ['seriestitle']},
 {facet_class => 'subject', facet_order => ['name', 'geographic']}
];

You may also change the default number of facets appearing under each category by editing the
facet.default_display_count value in config.tt2. The default value is 5.

Facilitating search scope changes
Users often search in a limited scope, such as only searching items in their local library. When
they aren’t able find materials that meet their needs in a limited scope, they may wish to repeat
their search in a system-wide or consortium-wide scope. Evergreen provides an optional button
and checkbox to alter the depth of the search to a defined level.

The button and checkbox are both enabled by default and can be configured in the Depth Button/
Checkbox section of config.tt2.

Noteworthy settings related to these features include:

• ctx.depth_sel_checkbox— set this to 1 to display the checkbox, 0 to hide it.

• ctx.depth_sel_button— set this to 1 to display the button, 0 to hide it.

• ctx.depth_sel_depth— the depth that should be applied by the button and checkbox. A value of
0 would typically search the entire consortium, and 1 would typically search the library’s system.

Sitemap generator
A sitemap directs search engines to the pages of interest in a web site so that the search engines
can intelligently crawl your site. In the case of Evergreen, the primary pages of interest are the
bibliographic record detail pages.

The sitemap generator script creates sitemaps that adhere to the http://sitemaps.org specification,
including:

• limiting the number of URLs per sitemap file to no more than 50,000 URLs;

• providing the date that the bibliographic record was last edited, so that once a search engine
has crawled all of your sites' record detail pages, it only has to reindex those pages that are new
or have changed since the last crawl;

• generating a sitemap index file that points to each of the sitemap files.

Running the sitemap generator
The sitemap_generator script must be invoked with the following argument:

Chapter 24. Designing the patron search experience 149
Report errors in this documentation using Launchpad.

http://www.sitemaps.org
http://sitemaps.org
https://bugs.launchpad.net/evergreen/+filebug

• --lib-hostname: specifies the hostname for the catalog (for example, --lib-hostname
https://catalog.example.com); all URLs will be generated appended to this hostname

Therefore, the following arguments are useful for generating multiple sitemaps per Evergreen
instance:

• --lib-shortname: limit the list of record URLs to those which have copies owned by the
designated library or any of its children;

• --prefix: provides a prefix for the sitemap index file names

Other options enable you to override the OpenSRF configuration file and the database connection
credentials, but the default settings are generally fine.

Note that on very large Evergreen instances, sitemaps can consume hundreds of megabytes of
disk space, so ensure that your Evergreen instance has enough room before running the script.

Sitemap details
The sitemap generator script includes located URIs as well as copies listed in the
asset.opac_visible_copies materialized view, and checks the children or ancestors of the
requested libraries for holdings as well.

Scheduling
To enable search engines to maintain a fresh index of your bibliographic records, you may want to
include the script in your cron jobs on a nightly or weekly basis.

Sitemap files are generated in the same directory from which the script is invoked, so a cron entry
will look something like:
12 2 * * * cd /openils/var/web && /openils/bin/sitemap_generator

Troubleshooting TPAC errors
If there is a problem such as a TT syntax error, it generally shows up as an ugly server failure page.
If you check the Apache error logs, you will probably find some solid clues about the reason for the
failure. For example, in the following example, the error message identifies the file in which the
problem occurred as well as the relevant line numbers.

Example error message in Apache error logs:
bash# grep "template error" /var/log/apache2/error_log
[Tue Dec 06 02:12:09 2011] [warn] [client 127.0.0.1] egweb: template error:
 file error - parse error - opac/parts/record/summary.tt2 line 112-121:
 unexpected token (!=)\n [% last_cn = 0;\n FOR copy_info IN
 ctx.copies;\n callnum = copy_info.call_number_label;\n

Chapter 24. Designing the patron search experience 150
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

Chapter 25. Ebook API integration
Evergreen supports integration with third-party APIs provided by OverDrive and OneClickdigital.

When ebook API integration is enabled, the following features are supported:

• Bibliographic records from these vendors that appear in your public catalog will include vendor
holdings and availability information.

• Patrons can check out and place holds on OverDrive and OneClickdigital ebook titles from within
the public catalog.

• When a user is logged in, the public catalog dashboard and My Account interface will include
information about that user’s checkouts and holds for supported vendors.

The ability to check out and place holds on ebook titles is an experimental feature in 3.0. It is
not recommended for production use without careful testing.

For API integration to work, you need to request API access from the vendor and configure your
Evergreen system according to the instructions below. You also need to configure the new open-
ils.ebook_api service.

This feature assumes that you are importing MARC records supplied by the vendor into your
Evergreen system, using Vandelay or some other MARC import method. This feature does not
search the vendor’s online collections or automatically import vendor records into your system; it
merely augments records that are already in Evergreen.

A future Evergreen release will add the ability for users to check out titles, place holds, etc., directly
via the public catalog.

Ebook API service configuration
This feature uses the new open-ils.ebook_api OpenSRF service. This service must be configured
in your opensrf.xml and opensrf_core.xml config files for ebook API integration to work. See
opensrf.xml.example and opensrf_core.xml.example for guidance.

OverDrive API integration
Before enabling OverDrive API integration, you will need to request API access from OverDrive.
OverDrive will provide the values to be used for the following new org unit settings:

• OverDrive Basic Token: The basic token used for API client authentication. To generate your
basic token, combine your client key and client secret provided by OverDrive into a single
string ("key:secret"), and then base64-encode that string. On Linux, you can use the following
command: echo -n "key:secret" | base64 -

Chapter 25. Ebook API integration 151

• OverDrive Account ID: The account ID (a.k.a. library ID) for your OverDrive API account.

• OverDrive Website ID: The website ID for your OverDrive API account.

• OverDrive Authorization Name: The authorization name (a.k.a. library name) designated by
OverDrive for your library. If your OverDrive subscription includes multiple Evergreen libraries,
you will need to add a separate value for this setting for each participating library.

• OverDrive Password Required: If your library’s OverDrive subscription requires the patron’s PIN
(password) to be provided during patron authentication, set this setting to "true." If you do not
require the patron’s PIN for OverDrive authentication, set this setting to "false." (If set to "true,"
the password entered by a patron when logging into the public catalog will be cached in plain
text in memcached.)

• OverDrive Discovery API Base URI and OverDrive Circulation API Base URI: By default, Evergreen
uses OverDrive’s production API, so you should not need to set a value for these settings. If you
want to use OverDrive’s integration environment, you will need to add the appropriate base URIs
for the discovery and circulation APIs. See OverDrive’s developer documentation for details.

• OverDrive Granted Authorization Redirect URI: Evergreen does not currently support granted
authorization with OverDrive, so this setting is not currently in use.

For more information, consult the OverDrive API documentation.

To enable OverDrive API integration, adjust the following public catalog settings in config.tt2:

• ebook_api.enabled: set to "true".

• ebook_api.overdrive.enabled: set to "true".

• ebook_api.overdrive.base_uris: list of regular expressions matching OverDrive URLs found
in the 856$9 field of older OverDrive MARC records. As of fall 2016, OverDrive’s URL format has
changed, and the record identifier is now found in the 037$a field of their MARC records, with
"OverDrive" in 037$b. Evergreen will check the 037 field for OverDrive record identifiers; if your
system includes older-style OverDrive records with the record identifier embedded in the 856
URL, you need to specify URL patterns with this setting.

OneClickdigital API integration
Before enabling OneClickdigital API integration, you will need to request API access from
OneClickdigital. OneClickdigital will provide the values to be used for the following new org unit
settings:

• OneClickdigital Library ID: The identifier assigned to your library by OneClickdigital.

• OneClickdigital Basic Token: Your client authentication token, supplied by OneClickdigital when
you request access to their API.

For more information, consult the OneClickdigital API documentation.

To enable OneClickdigital API integration, adjust the following public catalog settings in
config.tt2:

Chapter 25. Ebook API integration 152
Report errors in this documentation using Launchpad.

https://developer.overdrive.com/docs/getting-started
http://developer.oneclickdigital.us/
https://bugs.launchpad.net/evergreen/+filebug

• ebook_api.enabled: set to "true".

• ebook_api.oneclickdigital.enabled: set to "true".

• ebook_api.oneclickdigital.base_uris: list of regular expressions matching OneClickdigital
URLs found in the 859$9 field of your MARC records. Evergreen uses the patterns specified here
to extract record identifiers for OneClickdigital titles.

Additional configuration
Evergreen communicates with third-party vendor APIs using the new
OpenILS::Utils::HTTPClient module. This module is configured using settings in opensrf.xml.
The default settings should work for most environments by default, but you may need to specify a
custom location for the CA certificates installed on your server. You can also disable SSL certificate
verification on HTTPClient requests altogether, but doing so is emphatically discouraged.

Chapter 25. Ebook API integration 153
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

Chapter 26. Managing audio alerts

Globally silencing sounds

The file nosound.wav can be used to globally disable audio alerts for a specific event on an
Evergreen system.

For example, to silence the alert that sounds after a successful patron search:
mkdir -p /openils/var/web/audio/notifications/success/patron/
cd /openils/var/web/audio/notifications/success/patron/
ln -s ../../nosound.wav by_search.wav

Self-check interface

Sounds may play at certain events in the self check interface. These events are defined in the
templates/circ/selfcheck/audio_config.tt2 template. To use the default sounds, you could
run the following command from your Evergreen server as the root user (assuming that /openils/
is your install prefix):
cp -r /openils/var/web/xul/server/skin/media/audio /openils/var/web/.

Chapter 26. Managing audio alerts 154

Part X. Creating a New
Skin: the Bare Minimum

Table of Contents
27. Introduction ... 157
28. Apache directives ... 158
29. Customizing templates ... 159

Part X. Creating a New Skin: the Bare Minimum 156

Chapter 27. Introduction
When you adopt the TPAC as your catalog, you must create a new skin. This involves a combination
of overriding template files and setting Apache directives to control the look and feel of your
customized TPAC.

Chapter 27. Introduction 157

Chapter 28. Apache directives
There are a few Apache directives and environment variables of note for customizing TPAC
behavior. These directives should generally live within a <vhost> section of your Apache
configuration.

• OILSWebDefaultLocale specifies which locale to display when a user lands on a page in the TPAC
and has not chosen a different locale from the TPAC locale picker. The following example shows
the fr_ca locale being added to the locale picker and being set as the default locale:
PerlAddVar OILSWebLocale "fr_ca"
PerlAddVar OILSWebLocale "/openils/var/data/locale/opac/fr-CA.po"
PerlAddVar OILSWebDefaultLocale "fr-CA"

• physical_loc is an Apache environment variable that sets the default physical location, used for
setting search scopes and determining the order in which copies should be sorted. The following
example demonstrates the default physical location being set to library ID 104:
SetEnv physical_loc 104

Chapter 28. Apache directives 158

Chapter 29. Customizing templates
When you install Evergreen, the TPAC templates include many placeholder images, text, and links.
You should override most of these to provide your users with a custom experience that matches
your library. Following is a list of templates that include placeholder images, text, or links that you
should override.

All paths are relative to /openils/var/templates/opac

• parts/config.tt2: contains many configuration settings that affect the behavior of the TPAC,
including:

• hiding the Place Hold button for available items

• enabling RefWorks support for citation management

• adding OpenURL resolution for electronic resources

• enabling Google Analytics tracking for your TPAC

• displaying the "Forgot your password?" prompt

• controlling the size of cover art on the record details page

• defining which facets to display, and in which order

• controlling basic and advanced search options

• controlling if the "Show More Details" button is visible or activated by default in OPAC search
results

• hiding phone notification options (useful for libraries that do not do phone notifications)

• disallowing password or e-mail changes (useful for libraries that use centralized authentication
or single sign-on systems)

• displaying a maintenance message in the public catalog and KPAC (this is controlled by the
ctx.maintenance_message variable)

• displaying previews of books when available from Google Books. This is controlled by the
ctx.google_books_preview variable, which is set to 0 by default to protect the privacy of users
who might not want to share their browsing behavior with Google.

• disabling the "Group Formats and Editions" search. This is controlled by setting the
metarecords.disabled variable to 1.

• setting the default search to a Group Formats and Editions search. This is done by setting the
search.metarecord_default variable to 1.

Chapter 29. Customizing templates 159

• parts/footer.tt2 and parts/topnav_links.tt2: contains customizable links. Defaults like
Link 1 will not mean much to your users!

• parts/homesearch.tt2: holds the large Evergreen logo on the home page of the TPAC.
Substitute your library’s logo, or if you are adventurous, create a "most recently added items"
carousel… and then share your customization with the Evergreen community.

• parts/topnav_logo.tt2: holds the small Evergreen logo that appears on the top left of every
page in the TPAC. You will also want to remove or change the target of the link that wraps the
logo and leads to the Evergreen site.

• parts/login/form.tt2: contains some assumptions about terminology and examples that you
might prefer to change to be more consistent with your own site’s existing practices. For example,
you may not use PIN at your library because you want to encourage users to use a password that
is more secure than a four-digit number.

• parts/login/help.tt2: contains links that point to http://example.com, images with text on
them (which is not an acceptable practice for accessibility reasons), and promises of answers to
frequently asked questions that might not exist at your site.

• parts/login/password_hint.tt2: contains a hint about your users' password on first login that
is misleading if your library does not set the initial password for an account to the last four digits
of the phone number associated with the account.

• parts/myopac/main_refund_policy.tt2: describes the policy for refunds for your library.

• parts/myopac/prefs_hints.tt2: suggests that users should have a valid email on file so they
can receive courtesy and overdue notices. If your library does not send out email notices, you
should edit this to avoid misleading your users.

• myopac/update_password_msg.tt2: defines the password format that needs to be used when
setting a user password. If your Evergreen site has set Password format regex in the Library
Settings Editor, you should update the language to describe the format that should be used.

• password_reset.tt2: in the msg_map section, you might want to change the NOT_STRONG text
that appears when the user tries to set a password that does not match the required format.
Ideally, this message will tell the user how they should format the password.

• parts/css/fonts.tt2: defines the font sizes for the TPAC in terms of one base font size, and
all other sizes derived from that in percentages. The default is 12 pixels, but some design sites
strongly suggest a base font size of 16 pixels. Perhaps you want to try 1em as a base to respect
your users' preferences. You only need to change one number in this file if you want to experiment
with different options for your users.

• parts/css/colors.tt2: chances are your library’s official colors do not match Evergreen’s wall
of dark green. This file defines the colors in use in the standard Evergreen template. In theory
you should be able to change just a few colors and everything will work, but in practice you will
need to experiment to avoid light-gray-on-white low-contrast combinations.

The following are templates that are less frequently overridden, but some libraries benefit from
the added customization options.

Chapter 29. Customizing templates 160
Report errors in this documentation using Launchpad.

http://evergreen-ils.org
http://example.com
http://goo.gl/WfNkE
https://bugs.launchpad.net/evergreen/+filebug

• parts/advanced/numeric.tt2: defines the search options of the Advanced Search > Numeric
search. If you wanted to add a bib call number search option, which is different from the item
copy call number; you would add the following code to numeric.tt2.
<option value="identifier|bibcn">[% l('Bib Call Number') %]</option>

Chapter 29. Customizing templates 161
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

Part XI. Keeping Evergreen
Current and Secure

Table of Contents
30. Introduction ... 164
31. Upgrading the Evergreen software ... 165
32. Securing the server(s) on which your Evergreen installation runs .. 166

Part XI. Keeping Evergreen Current and Secure 163

Chapter 30. Introduction
When it comes to running an Evergreen system, there are two special areas of concern:

• How and when you decide to upgrade Evergreen software or apply fixes

• How to take care of the actual server(s) that your Evergreen system uses

The following hints to help you cope with these challenges.

Chapter 30. Introduction 164

Chapter 31. Upgrading the Evergreen
software
The Evergreen community at large have agreed upon an upgrade cycle that produces new major
releases twice a year, in Spring and Fall. Major releases can contain new features. The community
supports each major release with 12 subsequent monthly minor releases that contain only bug
fixes, and continues to provide security fixes if necessary for an additional three months after the
end of the regular minor bug fix support, for a total of 15 months of support for each major release.

As a general rule, as the Evergreen community releases each new version of the Evergreen
software, they also provide a guideline on how to upgrade from the previous release as part of the
official Evergreen documentation at http://docs.evergreen-ils.org. Follow the instructions exactly
and in the order that they are given—and if you run into a problem, report it to the community with
as much detail about the error message or symptoms of the problem as you can.

Keep the Evergreen release schedule in mind when planning your own testing and upgrade
schedules. If you participate in testing new Evergreen releases during the release candidate stages,
you will prepare your own library for the upgrade process and help flush out any remaining bugs
before the major release of the software. This also gives you time to prepare the members of
your library for the upcoming changes by giving them the chance, when possible, to familiarize
themselves with new features on your test system. You also have the chance to prepare supporting
materials, like handouts and other kinds of documentation, to help your users before, during and
after each upgrade cycle.

Chapter 31. Upgrading the Evergreen software 165

http://docs.evergreen-ils.org

Chapter 32. Securing the server(s) on which
your Evergreen installation runs
An Evergreen installation requires interaction between many different components and, depending
on the size of your consortium and how many servers you have, it can range from quite complex
to extremely. That said, there are a number of standard guidelines that you can follow to secure
your server.

• Keep your server up-to-date. Apply security updates as soon as possible when they come out to
prevent your system from being exposed to a known vulnerability.

• Pay close attention to account administration on the server. Do not give any user on the server
more power than they need.

• Disable services that you do not need.

• Pay attention to your system’s log files to see what kind of activity is happening and notice
anything unusual.

• A central idea to server security is to make it unreasonably difficult for anyone who tries to
compromise your system. Let them choose targets more vulnerable than yours.

This topic is very rich and there are many resources available, both in print and on the web. It is
worth your time to learn more.

Chapter 32. Securing the server(s) on which your Evergreen installation runs 166

Appendix A. Attributions
Copyright © 2009-2018 Evergreen DIG

Copyright © 2007-2018 Equinox

Copyright © 2007-2018 Dan Scott

Copyright © 2009-2018 BC Libraries Cooperative (SITKA)

Copyright © 2008-2018 King County Library System

Copyright © 2009-2018 Pioneer Library System

Copyright © 2009-2018 PALS

Copyright © 2009-2018 Georgia Public Library Service

Copyright © 2008-2018 Project Conifer

Copyright © 2009-2018 Bibliomation

Copyright © 2008-2018 Evergreen Indiana

Copyright © 2008-2018 SC LENDS

Copyright @ 2012-2018 CW MARS

DIG Contributors

• Hilary Caws-Elwitt, Susquehanna County Library

• Karen Collier, Kent County Public Library

• George Duimovich, NRCan Library

• Lynn Floyd, Anderson County Library

• Sally Fortin, Equinox Software

• Wolf Halton, Lyrasis

• Jennifer Pringle, SITKA

• June Rayner, eiNetwork

• Steve Sheppard

• Ben Shum, Bibliomation

• Roni Shwaish, eiNetwork

• Robert Soulliere, Mohawk College

Appendix A. Attributions 167

• Remington Steed, Calvin College

• Jeanette Lundgren, CW MARS

• Tim Spindler, CW MARS

• Jane Sandberg, Linn-Benton Community College

• Lindsay Stratton, Pioneer Library System

• Yamil Suarez, Berklee College of Music

• Jenny Turner, PALS

Appendix A. Attributions 168
Report errors in this documentation using Launchpad.

https://bugs.launchpad.net/evergreen/+filebug

Appendix B. Admonitions
• Note

• warning

• caution

• tip

Appendix B. Admonitions 169

Appendix C. Licensing

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

Appendix C. Licensing 170

http://creativecommons.org/licenses/by-sa/3.0/

Index
A
Apache, 27
audio_config.tt2, 154
audio alerts, 154

self check interface, 154
silencing, 154

authentication
LDAP, 91
proxy, 91

authority control, 72

C
configuring, 105

D
database schema, 27
Debian, 26

E
exporting

using the command line, 72

I
importing

using the command line, 74, 75

L
LDAP, 91
Linux

Debian, 26
Ubuntu, 26

M
marc_export, 72
marc2are.pl, 74
MARC editor

configuring, 105
MARC records

exporting
using the command line, 72

importing
using the command line, 74, 75

N
nosound.wav, 154

P
pg_loader.pl, 74
Physical characteristics wizard, 105
Populate Address by ZIP Code

ZIP code, 92
proxy, 91

R
reporter

starting, 78
starting daemon, 78
stopping daemon, 78

reports
starting server application, 78
stopping server application, 78

S
self check interface, 154

audio alerts, 154
silencing, 154
starting, 78
starting daemon, 78
starting server application, 78
stopping daemon, 78
stopping server application, 78

U
Ubuntu, 26
using the command line, 72, 74, 75

Z
ZIP code, 92
zips.txt

Populate Address by ZIP Code
ZIP code, 92

Index 171

	Administering Evergreen through the Command Line
	Table of Contents
	Part I. Introduction
	Chapter 1. About This Documentation
	Chapter 2. About Evergreen

	Part II. Installing Evergreen
	Chapter 3. System Requirements
	Server Minimum Requirements
	Web Client Requirements
	Staff Client Requirements

	Chapter 4. Installing the Evergreen server
	Preamble: referenced user accounts
	Preamble: developer instructions
	Installing prerequisites
	Extra steps for web staff client
	Install dependencies for web staff client
	Install files for web staff client

	Configuration and compilation instructions
	Installation instructions
	Change ownership of the Evergreen files
	Run ldconfig
	Additional Instructions for Developers
	Configure the Apache Web server
	Configure OpenSRF for the Evergreen application
	Configure action triggers for the Evergreen application
	Creating the Evergreen database
	Setting up the PostgreSQL server
	Creating the Evergreen database and schema
	Loading sample data
	Creating the database on a remote server
	PostgreSQL 9.4 and later

	Starting Evergreen
	Testing connections to Evergreen
	Getting help
	License

	Chapter 5. Upgrading the Evergreen Server
	Software Prerequisites
	Upgrade the Evergreen code
	Upgrade the Evergreen database schema
	Restart Evergreen and Test
	Review Release Notes

	Chapter 6. Setting Up EDI Acquisitions
	Introduction
	Installation
	Install EDI Translator
	Install EDI Scripts

	Configuration
	Configuring Providers
	Configuring EDI Accounts
	Configuring Organizational Unit SAN code

	Troubleshooting
	PO JEDI Template Issues

	Chapter 7. Migrating from a legacy system
	Introduction
	Making electronic resources visible in the catalog
	Migrating your bibliographic records
	Migrating your call numbers, copies, and parts
	Migrating Patron Data
	Introduction
	Creating an sql Script for Importing Patrons
	Batch Updating Patron Data

	Part III. Individual Evergreen Components
	Chapter 8. Easing gently into OpenSRF
	Abstract
	Introducing OpenSRF
	Programming language support
	OpenSRF communication flows over XMPP
	OpenSRF communication flows over HTTP
	Stateless and stateful connections

	Enough jibber-jabber: writing an OpenSRF service
	Registering a service with the OpenSRF configuration files
	Calling an OpenSRF method
	Calling OpenSRF methods from the srfsh client
	Getting documentation for OpenSRF methods from the srfsh client
	Calling OpenSRF methods from Perl applications

	Accepting and returning more interesting data types
	Accepting and returning Evergreen objects
	Returning streaming results
	Error! Warning! Info! Debug!
	Caching results: one secret of scalability
	Initializing the service and its children: child labour
	Retrieving configuration settings

	Getting under the covers with OpenSRF
	Get on the messaging bus - safely
	Message body format
	Registering OpenSRF methods in depth

	Evergreen-specific OpenSRF services
	Evergreen after one year: reflections on OpenSRF
	Strengths of OpenSRF
	Weaknesses

	Summary
	Appendix: Python client

	Chapter 9. Support Scripts
	authority_control_fields: Connecting Bibliographic and Authority records
	marc_export: Exporting Bibliographic Records into MARC files
	Options
	--descendants and --library
	--items
	--since
	--store
	--uris

	Importing Authority Records from Command Line
	Juvenile-to-adult batch script
	MARC Stream Importer
	Processing Action Triggers

	Chapter 10. Daemons and services
	Starting and Stopping the Reporter Daemon
	Starting the Reporter Daemon
	Stopping the Reporter Daemon

	ebook_api service
	hold-targeter service
	QStore service

	Chapter 11. Developing with pgTAP tests
	Setting up pgTAP on your development server
	Running pgTAP tests

	Part IV. System Configuration
	Chapter 12. Describing your people
	Setting the staff user’s working location
	Comparing approaches for managing permissions
	Managing permissions in the staff client
	Where to find existing permissions and what they mean
	Where to find existing Permission Groups
	Adding or removing permissions from a Permission Group

	Managing role-based permission groups in the staff client
	Secondary Group Permissions
	Granting Secondary Permissions Groups
	Removing Secondary Group Permissions

	Managing role-based permission groups in the database
	Authentication Proxy
	Patron Address City/State/County Pre-Populate by ZIP Code
	Scoping and Permissions
	Setup Steps
	Step 1 - Setup Data File
	Step 2 - Enable Feature
	Step 3 - Test

	ZIP Code Data
	Manual Entry
	Geonames.org Data
	Commercial Data
	Existing Patron Database

	Development

	Apache Rewrite Tricks
	Short URLs
	Domain Based Content with RewriteMaps

	Apache Access Handler Perl Module
	Use Cases
	Proxying Websites

	Chapter 13. Updating translations using Launchpad
	Prerequisites
	Updating the translations

	Part V. Cataloging Administration
	Chapter 14. Cataloging Staff Interface
	Administering the Physical Characteristics Wizard

	Chapter 15. Cataloging timesavers and shortcuts
	MARC Templates
	Adding MARC Templates

	Chapter 16. Notes about the Bibliographic Schema in the Database
	Bibliographic fingerprint

	Part VI. Managing Staff from the Command Line
	Chapter 17. Changing passwords

	Part VII. Patron Data
	Chapter 18. Aging Circulations
	Global Flags
	What Data is Aged?
	How Circulations are Aged
	Impacts on Billing Data

	Chapter 19. Purging holds
	Chapter 20. Purge User Activity

	Part VIII. Backing up your Evergreen System
	Chapter 21. Database backups
	Creating logical database backups
	Restoring from logical database backups
	Creating physical database backups with support for point-in-time recovery
	Creating a replicated database

	Part IX. UX Administration
	Chapter 22. TPac Configuration and Customization
	Template toolkit documentation
	TPAC URL
	Perl modules used directly by TPAC
	Default templates
	Apache configuration files
	TPAC CSS and media files
	Mapping templates to URLs
	How to override templates
	Defining multiple layers of overrides

	Changing some text in the TPAC
	Troubleshooting

	Chapter 23. Designing your catalog
	Configuring and customizing the public interface
	Locating the default template files
	Mapping templates to URLs
	How to override template files
	Configuring the custom templates directory in Apache’s eg.conf
	Adjusting colors for your public interface
	Adjusting fonts in your public interface
	Media file locations in the public interface
	Changing some text in the public interface
	Adding translations to PO file
	Adding and removing MARC fields from the record details display page
	Using bibliographic source variables

	Setting the default physical location for your library environment
	Setting a default language and adding optional languages
	Updating translations in Evergreen using current translations from Launchpad

	Change Date Format in Patron Account View
	Including External Content in Your Public Interface
	OpenLibrary
	ChiliFresh
	Content Café
	Obalkyknih.cz
	Setting up Obalkyknih.cz account
	Enabling Obalkyknih.cz in Evergreen

	Google Analytics
	NoveList
	RefWorks
	SFX OpenURL Resolver
	Syndetic Solutions
	Clear External/Added Content Cache
	Configure a Custom Image for Missing Images

	Including Locally Hosted Content in Your Public Interface
	File Location and Format
	Example

	Chapter 24. Designing the patron search experience
	Editing the formats select box options in the search interface
	Adding and removing search fields in advanced search
	Changing the display of facets and facet groups
	Facilitating search scope changes
	Sitemap generator
	Running the sitemap generator
	Sitemap details
	Scheduling

	Troubleshooting TPAC errors

	Chapter 25. Ebook API integration
	Ebook API service configuration
	OverDrive API integration
	OneClickdigital API integration
	Additional configuration

	Chapter 26. Managing audio alerts
	Globally silencing sounds
	Self-check interface

	Part X. Creating a New Skin: the Bare Minimum
	Chapter 27. Introduction
	Chapter 28. Apache directives
	Chapter 29. Customizing templates

	Part XI. Keeping Evergreen Current and Secure
	Chapter 30. Introduction
	Chapter 31. Upgrading the Evergreen software
	Chapter 32. Securing the server(s) on which your Evergreen installation runs

	Appendix A. Attributions
	Appendix B. Admonitions
	Appendix C. Licensing
	Index

